sreenath

Profile picture for user sreenath
Dr. Sreenath Vijayakumar
Assistant Professor
Email Me
Biosketch

 

Education:

 

Doctor of Philosophy (Ph.D.) and Master of Science (M.S.) in Electrical Engineering: 2013-2018

Indian Institute of Technology (IIT) Madras, Chennai

·        Thesis: Design and Development of Efficient Interfacing Circuits for Capacitive and Resistive Sensing Elements

 

Bachelor of Technology (B.Tech.): 2009-2013

Amrita School of Engineering, Kollam

·        Major in Electronics & Communication Engineering

 

Experience:

 

Assistant Professor, Electrical Engineering: June 2019 - Present

Indian Institute of Technology (IIT) Palakkad

 

Product Development Scientist: July 2018 - May 2019

Bajaj Automobiles, Pune

 

Post-Doctoral Fellow: April 2018 - June 2018

Indian Institute of Technology (IIT) Madras

Research

 

Area of specialization:

·        Capacitive, Resistive and Inductive Sensors

·        Signal Conditioning Circuits

·        Direct-Digitizers

·        Sensors for Agriculture, Automotive and Industrial Applications

·        Measurements and Instrumentation

 

Awards & Recognitions: 

·      Institute Research Award 2018 (First Rank in the department level and Second Rank in the institute level) in recognition of the quality and quantity of research work carried out as a part of doctoral research.

 

·      Best Ph.D. Thesis in Electrical Engineering- ‘Dr. M. Mukunda Rao Endowment Prize 2018’ based on the overall research performance carried out at IIT Madras.

 

·      Pre-Doctoral Fellowship Award for submitting Ph.D.-M.S. thesis before 5 years at IIT Madras- Equivalent to Institute Post-Doctoral Fellowship.

 

·      IEEE Best Paper Award II at the 2016 IEEE I2MTC conference held in Taipei, Taiwan.

 

·      IEEE Student Travel Award to present the research work at 2015 IEEE I2MTC conference held in Pisa, Italy.

 

International Conference Publications:

[7] Narayanan P. P and V. Sreenath, "A Novel Single-Element Inductance-to-Digital Converter with Automatic Offset Eliminator," IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, Scotland (virtual conference), May 2021. (DOI: 10.1109/I2MTC50364.2021.9459925)

 

[6] Pinku Sebastian, Narayanan P. P and V. Sreenath, "A Switched-Capacitor CVC and CFC for Capacitive Sensors Representable using π-Model," IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Glasgow, Scotland (virtual conference), May 2021. (DOI: 10.1109/I2MTC50364.2021.9459993)

 

[5] V. Sreenath and B. George, " A Novel Closed-Loop SC Capacitance-to-Frequency Converter with High Linearity," IEEE  International Instrumentation and Measurement Technology Conference (I2MTC), pp. 664-668, Torino, Italy, May 2017.

 

[4] V. Sreenath, K. Semeerali and B. George, "A Resistance-to-Digital Converter Possessing Exceptional Insensitivity to Circuit Parameters," IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 143-147, Taipei, Taiwan, May 2016.

 

[3] R. Gupta, V. Sreenath and B. George, "A Modified RDC with an Auto-Adjustable SC Source Enabled Auto-Calibration Scheme," IEEE Sensors Applications Symposium, pp. 94-99, Catania, Italy, 20-22 April 2016.

 

[2] V. Sreenath and B. George, "A direct-digital interface circuit for sensors representable using parallel R-C model," IEEE  International Instrumentation and Measurement Technology Conference (I2MTC), pp. 138-142, Taipei, Taiwan, May 2016.

 

[1] V. Sreenath and B. George, "A Novel Switched-Capacitor Capacitance-to-Digital Converter for Single Element Capacitive Sensors," IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 381-386, Pisa, Italy, May 2015.

 

 

Journal Publications:  

[5] V. Sreenath and B. George, "An Improved Closed-Loop Switched Capacitor Capacitance-to-Frequency Converter And Its Evaluation," IEEE Transactions on Instrumentation and Measurement, vol. 67, no. 5, pp. 1028-1035, May 2018.

 

[4] V. Sreenath and B. George, "A Robust Switched-Capacitor CDC," in IEEE Sensors Journal, vol. 18, no. 14, pp. 5985-5992, July 2018.

 

[3] V. Sreenath, K. Semeerali and B. George, "A Resistive Sensor Readout Circuit with Intrinsic Insensitivity to Circuit Parameters and its Evaluation," IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 7, pp. 1719-1727, July 2017.

 

[2] V. Sreenath and B. George, "A Switched-Capacitor Circuit-Based Digitizer for Efficient Interfacing of Parallel R-C Sensors," in IEEE Sensors Journal, vol. 17, no. 7, pp. 2109-2119, April 2017.

 

[1] V. Sreenath and B. George, "An Easy-to-Interface CDC With an Efficient Automatic Calibration," IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 5, pp. 960-967, May 2016.

 

Research Experience:

Developed novel, high accuracy, interfacing circuits suitable for capacitive, resistive, and R-C sensors. The developed interfacing schemes are directly applicable to sense numerous physical parameters in scientific and industrial applications such as angle, humidity, touch, displacement, level, fluid flow, soil water content, and position. The realized signal conditioning schemes provide direct digital output without any dedicated Analog-to-Digital Converter (ADC) and possess greater noise margin, processing power and increased versatility.

Salient points of the work done are:

·        Developed Capacitance-to-Digital Converter (CDC) that is easy to interface with the sensor and provide the best dynamic range even when a large offset is present in the sensor.                         

         >    The calibration process of the offset capacitance is executed automatically without any manual intervention.

         >   Excitation is derived from a dc reference source thereby achieving higher accuracy compared to sinusoidal excitation.

·        A novel digitizer that accurately provides the value of the change in capacitance (ΔC) and resistance (ΔR) of a parallel R-C sensor.                                                                                   

        >    For the first time, a direct digital converter has been developed for interfacing parallel R-C sensor using DC excitation source.

        >    An efficient automatic calibration process was developed that provides final output independent of the offset values of parallel R-C sensors and maintains negligible cross-sensitivity between ΔC and ΔR measurements.

·        Novel readout circuits for interfacing single element capacitive and resistive sensors.                   

       >    The digital output obtained from the developed interfacing schemes possesses exceptional insensitivity to the non-ideal circuit parameters and their drift.

      >    Highly effective for accurate measurements of sensor capacitance and resistance even if exposed to variations in measurement conditions such as temperature that can deviate the values of the circuit parameters drastically.

·        Realized a Capacitance-to-Frequency Converter (CFC) with a higher update rate compared to the existing integrating type CDCs.                                                                                                

        >    CFC operates in an efficient feedback mechanism that ensures the final output is insensitive to the errors due to the non-linearity and non-ideal circuit parameters of the units employed.

        >    The developed CFC achieves the best accuracy and linearity performance among the prior CFC topologies.

Research Group

Ph.D.

·        Mr. Narayanan P. P. (PMRF Fellow; Jan 2020 - )

·        Mr. Byju C. (Jan 2021 - )

·     Mr. Muhamed Jamshir (Jan 2022 - )

M.S.

·        Mr. Pinku Sebastian (Jan 2020 - )

Project Staff

·        Mr. Sanjo Sibi (Jan 2022 - )

 

Research Positions in Sensors, Measurements and Instrumentation | Electrical Engineering, IIT Palakkad

Looking for candidates interested in the following: sensors, signal conditioning circuits/interfacing circuits, embedded systems in instrumentation and measurement, direct digital converters for resistive, capacitive, inductive, and piezoelectric sensors, application-oriented sensor design, and development in agriculture/automotive/industrial domains.


Skills required: analog circuit design, PCB layout, and microcontroller programming. 
Research/working experience in circuit design and sensor development/prototyping is desirable.


Eligibility: BE/BTech in Electrical, Electronics, and Communication, Instrumentation. 

If you are interested in this research position, submit details here (https://forms.gle/KB4LuTzaeuvxEaobAand notify me via mail. 

Research Area
Sensors and Instrumentation
Additional Information
Title
Sponsored Projects
Description

Sl.No

Project Name

Role

Funding Agency

Duration

Budget

1

An Accurate and Efficient Parallel R-C Digitizer for Moisture Sensing

PI

SRG-SERB

Dec 2020 - Dec 2022

28 Lakh (INR)

2

Cyber-Physical Systems in Collaboration with Artificial Intelligence for Smart Agriculture

Co-PI

DST

July 2021- Sept 2025

374 Lakh (INR)

3

Smart-Agri-Tech: Development and Testing of Smart Farming

PI

Institute Project

Sept 2021 – Aug 2025

140 Lakh (INR)

4

Detector and alarm systems for fence breaches

PI

CSR & TECHIN

Dec 2021 – June 2022

2 Lakh (INR)

5

Design and development of a portable emergency ventilator for COVID-19 patients (Electrical and Control aspect)

PI

CSR- Federal Bank

April 2020 - Oct 2020 [completed]

6 Lakh (INR)

 

Title
Teaching
Description

·        EE5525: Sensors and Signal Conditioning Circuits

·        EE2040: Analog Circuits Theory

·        EE3030: Measurements and Instrumentation

 

·        EE3140: Measurements and Instrumentation Laboratory

·        EE3150: Analog Circuits Laboratory