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ABSTRACT 

 

Wire electric discharge machining (wire-EDM) is a non-traditional 

machining process whose mechanism of material removal is by controlled, 

repetitive electric sparks. The process is known for its capability to machine the 

superalloys which are difficult to machine conventionally. However, the process 

stability has to be controlled to ensure failure free operation and defect free parts.

The current work aims to create a condition monitoring system that predicts the 

events of machining failure or process instability. The monitoring system consists 

of multiple sensors to capture the current and voltage waveform. The process 

condition is accessed by the proportion of short circuit discharges and 

misdischarges (open circuit discharges) in a pulse cycle. The extracted features 

from the captured waveforms can provide valuable information about upcoming

process interruptions or potential surface damages to the machined parts.  

Initially, an offline analysis on the effect of discharge energy on machining 

stability and surface integrity is conducted. The responses studied are surface 

topography, morphology, geometric accuracy, elemental contamination and 

productivity. Wire wear pattern and breakage mechanism for different wire 

materials are analysed. Next, an offline multi-class neural network classification 

model is developed to classify the machining failures. The failure conditions 

considered are spark absence and wire breakages. Next, the effect of spark gap 

variation on the wire break failures and part quality is modelled and studied using 

an ANFIS model. These offline models can complement the online model in 

preliminary screening of parameters to set the initial conditions. The next phase 

involves the setting up of a condition monitoring system. A pulse discrimination 

algorithm is developed to classify the discharge sparks into normal, open and 

arc/short circuit sparks. Using the developed pulse classification algorithm, 

proportions of different pulses are calculated. The discharge characteristics like, 

abnormal pulse proportion, discharge energy, and pulse frequency are 

experimentally found to be responsible for process failures. Considerable 
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variations in these characteristics are observed before events of failure. Based on 

these in-process data, a neural network classifier is developed to predict process 

failures. The classifier is found to have an accuracy of 98.1 % in classifying the 

machining failures. Moreover, remaining useful life (RUL) is utilized to quantify 

the severity of the predicted event, based on which, a process control system is 

designed. The process control algorithm computes and suggests the parameter 

revisions to restore the machining stability. Pulse on time, pulse off time, and 

servo voltage are incrementally adjusted in this regard. The proposed condition 

monitoring and process control system is successful in foreseeing and preventing 

the wire breakage and spark absence failures during wire EDM process. The pulse 

train characteristics are also compared to analyse the effects of process control. 

The undesirable pulse types like short circuit and open circuit discharges are 

replaced by ideal normal circuit pulses.  

Keywords: Wire EDM, machining stability, condition monitoring, wire 

breakage, spark absence, process control, Inconel 718, spark gap bridging, short 

circuit sparks, neural network classifier, remaining useful life, process failure 

classification. 
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CHAPTER 1 

 

INTRODUCTION 

 

In the past few decades, the manufacturing industries have become smarter and 

more capable in terms of automation, artificial intelligence integration and self-

reliance. Fully automated manufacturing systems aimed at ‘zero defect 

manufacturing’ has become the need of the hour, which is made possible by 

advanced artificial intelligence (AI) integration combined with multi-sensory 

approach. Machining downtime is drastically getting reduced by developing 

condition monitoring and control systems for manufacturing processes. 

Condition monitoring systems are aimed at reducing material and energy 

utilization, inspection costs and equipment downtime.  

1.1 INDUSTRY 4.0 AND SMART MANUFACTURING 

Industry 4.0 refers to a new concept in manufacturing sector where the physical 

production is combined with digital technology. It is a data driven collaborative 

approach, which uses data analytics to enhance the process performance. It allows 

the manufacturing systems to collect, process and analyse data to monitor and 

optimize the production process. The vision of Industry 4.0 is to have fully 

automated manufacturing facilities through intelligent data driven systems. It 

comprises of internet of things (IoT), artificial intelligence (AI) and cloud 

computing (Menezes et al., 2019). The key elements of Industry 4.0 are given in 

Fig. 1.1. The fourth industrial revolution is also known as ‘Smart manufacturing’. 

Real-time decision-making capabilities are integrated to such systems through 

machine learning to make the processes more flexible, adaptable and failure free 

(Yan et al., 2017).  

Internet of things is a concept where the physical objects or digital devices can 

share data with each other through internet without human intervention. In a 

smart industry, such shared data can be utilized to understand trends before 
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certain events and can aid in monitoring, prediction and control of events like 

machine breakdown or failure (Huang et al., 2018). Artificial intelligence is the 

science that deals with intelligence exhibited by machines, similar to natural 

intelligence possessed by the humans. Through AI, machines are equipped with 

the capacity to learn from their past experiences. Intelligent machines are capable 

of performing predictions and adaptive control, based on the past learnings. In 

artificial intelligence, soft computing or computational intelligence is referred to 

those computational techniques which are capable of finding approximate 

solutions to extremely complex problems. Machine learning (ML) is a 

subdiscipline of soft computing which deals with the development of algorithms 

that emulate human learning. Such algorithms are capable of making decisions 

and predictions, based on their learnings from a training data. ML is classified 

into supervised and unsupervised learning techniques based on whether the 

desired output is explicitly fed with the training data. Integration of artificial 

intelligence has enabled the concepts of process control, condition monitoring 

and machine health prognostics in modern manufacturing industries                            

(Wang et al., 2018).  

 

 

 

 

 

 

 

Fig. 1.1 Elements of Industry 4.0 (Menezes et al., 2019) 
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1.2 CONDITION MONITORING OF MANUFACTURING PROCESSES 

Condition monitoring (CM) of manufacturing process is one of the primary 

research focuses in industry for the last few decades. Process condition 

monitoring aims at higher productivity, lower cost of production and higher part 

quality (Al-Habaibeh et al., 2004). Condition monitoring involves keeping track 

of various features which can indicate the health status of a manufacturing 

process. The features are ideally extracted from raw sensor signals of a physical 

quantity like temperature, force, vibration, sound, voltage, current etc. The 

physical quantities to be sensed and the feature to be extracted are selected 

suitably based on the process and application. Condition monitoring system 

performs early detection of process failures before any serious damage is caused 

to the tool or machined parts. The early detection provides an option to perform 

some corrective measures to rectify the potential damages. The remedial actions 

include tool change, parameter tuning, or other process control measures. Basic 

structure of a condition monitoring system is given in Fig. 1.2.    

 

 

 

 

 

 

Fig. 1.2 Condition monitoring system structure (Al-Habaibeh et al., 2004) 

Typical steps in the development of a condition monitoring system are as follows: 

• Selection of sensors: Sensor selection is based on the type of manufacturing 

process and condition monitoring methodology. There is a wide choice of 
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sensors to select from, such as acoustic sensors, current sensors, voltage 

sensors, accelerometers etc.  

• Signal processing: The process involves modifying the acquired raw signals 

to enhance its characteristics for proper analysis. It involves techniques like 

filtering, amplifying etc.  

• Feature selection and extraction: The step involves deciding and extracting 

the relevant features from the processed signal which can indicate the process 

health. The step is extremely critical since it involves identifying the features 

that corelates process health (tool state in the case of machining) and process 

conditions.  

• Developing a decision making or support system: Based on the extracted 

features, various decisions are to be taken by the intelligent system to 

maintain the process stability. The decision model’s task is to predict the 

machine health condition based on extracted features, so that remedial actions 

can be taken to prevent the undesirable outcomes.  

• Process monitoring: Based on the features extracted in real-time, various 

inferences are drawn regarding the process health. The real-time process 

monitoring relies on the decision-making system to diagnose the process 

condition. 

• Adaptive control: The step where the machine regulates the process 

conditions to restore the normal working conditions based on the support 

system recommendations. 

The monitoring of conventional manufacturing process involves keeping track of 

a physical quantity which arises from tool and workpiece physical interaction. 

Usually cutting force, temperature, vibratory, and acoustic signals are monitored 

using sensors to assess the machine health in this case. Tool wear, tool breakage, 

chatter etc. are identified using the monitoring systems (Ong et al., 2019). On the 

contrary, monitoring of non-traditional manufacturing process involves several 

additional challenges since the physical interaction between the tool and 

workpiece is absent. Such processes involve thermal, chemical, and electro 

thermal material removal mechanisms. Here, extremely high sampling rate 
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sensors and acquisition system are required to capture the process characteristics, 

like in the case of electric discharge machining process, where spark discharges 

happen in kHz range. To monitor such a process, high bandwidth sensors, and 

high sampling rate data acquisition system are required. Such a setup will 

generate a huge amount of data in real time, which makes the signal processing 

and computation extremely challenging.  

The presented work aims to develop a condition monitoring system for wire 

electric discharge machining process. More about the process is discussed in the 

upcoming sections. 

1.3 WIRE ELECTRIC DISCHARGE MACHINING 

The development of high-performance materials like superalloys with improved 

mechanical properties even at elevated temperatures demands equally advanced 

manufacturing processes to machine them. Traditional machining of super alloys 

has proven to be extremely difficult due to the formation of build-up edge, cold 

working nature of the work material, and rapid tool wear. Electric discharge 

machining (EDM) is a non-traditional machining process that possesses several 

advantages over the conventional processes to machine ‘difficult-to-cut’ 

materials like Ti alloys and superalloys due to the non-contact nature of material 

removal (Ho et al., 2003). The process was developed in 1940s using resistor–

capacitor  (RC) circuit to machine hard materials like tungsten. Wire EDM, 

developed in 1960s, is a specific variant of EDM where the required profile is cut 

by a travelling wire electrode through controlled and repetitive sparks (Ho et al., 

2004). This process is an extremely attractive option to machine superalloys into 

any complex and intricate shapes. The process is capable of machining any 

electrically conductive materials irrespective of their hardness, with excellent 

surface finish, minimal cutting forces, and residual stresses (Mandal and Dixit, 

2014).  

Wire electric discharge machining (wire EDM) is a non-traditional non-contact 

machining process. The process uses a thin metallic electrode to cut through any 

conductive materials irrespective of its hardness. This is an electro thermal 
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process which uses heat energy from electric sparks to melt and vaporize the 

workpiece material. Since the material removal happens from both the workpiece 

and wire electrode, fresh wire is continuously fed into the machining zone from 

a wire spool. A small gap, called inter electrode gap or spark gap, is maintained 

between the wire and workpiece which is filled with dielectric fluid. In the case 

of wire EDM, the preferred choice of dielectric is deionised water. The dielectric 

is flushed through upper and lower nozzles to the machining zone. The dielectric 

fluid also helps in cooling the workpiece and in removing the debris and gas 

bubbles from the machining zone. The wire translates with respect to workpiece 

in a CNC coded profile to machine the required shape. The non-contact material 

removal mechanism, combined with CNC coded profile, makes wire EDM 

capable of machining any complex and intricate profiles on even the hardest 

materials. The process is very precise, flexible and accurate, dimensionally and 

geometrically (Ho et al, 2004; Jain, 2009). Fig. 1.3 shows the wire EDM process 

schematic. 

 

 

 

 

 

Fig. 1.3 Schematic of the Wire EDM process 

1.3.1 Working principle of wire EDM 
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discharges. Workpiece and wire electrode are connected to the positive and 

negative terminal respectively. A dielectric fluid occupies the small gap between 
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during the pulse on time. Pulse off time is utilized to restore the dielectric 

properties and to clear the debris (resolidified molten material). Once the DC 

voltage is applied across the wire and workpiece electrodes, ionization of the 

dielectric fluid will be initiated in a channel of least inter electrode distance. 

Ionization occurs when the electrons from the wire electrode collides with 

dielectric molecules when they are accelerated towards the workpiece. The free 

electrons thus produced in the inter electrode gap moves towards the workpiece 

and the positive ions will move towards the wire electrode. Ionization progresses 

with time, and this narrow channel of free electrons and ions are called discharge 

channel. The resistivity of the discharge channel reduces with ionization and a 

point is reached where the dielectric barrier is breached and the fluid becomes 

conductive. Then a sudden discharge happens from the wire electrode towards 

workpiece through a plasma channel, vaporising the dielectric and melting the 

electrodes. Since the kinetic energy of fast-moving electrons are more compared 

to ions, higher material removal happens at the workpiece side compared to the 

electrode side. The temperature at the plasma channel can reach up to 10000 o C, 

which is high enough to melt any electrically conductive material. When the 

applied voltage is released, the plasma channel collapses, resulting in high 

pressure waves which ejects out the molten material from the spark region leaving 

a crater on the workpiece surface. Fig. 1.4 shows the material removal mechanism 

through discharge sparks. 

 

 

 

 

 

 
Fig. 1.4 Schematic of material removal in Wire EDM (Hsieh et al.,2009) 
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The expelled molten material, resolidifies instantly and these solid particles are 

called debris. The debris and the vapor bubbles are flushed away from the 

machining zone by the dielectric fluid in the pulse off duration. Some of the 

molten materials are resolidified back to the machined surface forming an 

undesirable recast layer. The ideal process mechanism involves breaking and 

restoring the dielectric properties during the pulse on and off cycles repeatedly 

(Jain, 2009).  

1.3.2 Wire material 

Wire material has a huge influence on the process performance. The wire 

electrodes vary in type, strength and size. Various types of wire electrodes 

generally used in wire EDM are discussed in this section. 

Uncoated brass electrode: The brass wire electrode, is considered as a good 

option for wire electrode material since brass is a very good electrical conductor. 

It can withstand tension better than pure copper wire, which was used earlier 

before brass wires were popularised. These wire electrodes give good surface 

finish and accuracy. These wires are also cost effective (Ramamurthy et al., 

2015).  

Zinc coated brass electrode: Zinc coated brass electrode contains zinc coating of 

20 μm to 30 μm thickness on a brass core. The coated electrodes are introduced 

to improve the cutting rate and accuracy of wire EDM process. Since the coated 

material is comparatively more volatile than the core, the coating gets vaporised 

relatively faster during the sparking operation. Due to a heat sink effect the inner 

core is protected from the thermal shock and the core material experiences a 

cooling effect. Thus, the coated wires can withstand higher discharge energy, 

resulting in faster cutting. Additionally, when the coating is vapourised, the 

instantaneous spark gap increases, thereby improving the flushability (Maher et 

al, 2014).  

Apart from these varieties, there is diffused wire, produced by heat treating the 

coated wire. The wire electrodes are also available in hard (high tensile wires), 

half hard, or soft (low tensile) varieties, based on their tensile strengths. Hard 
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wires have a tensile strength of 900 N/mm2, whereas half hard or soft wires have 

a tensile strength of 400 N/mm2. Hard wires are used for straight accurate cuts, 

while soft wires are used for taper cutting (Prohaszka et al, 1997).   

1.3.3 Control parameters 

Right selection of process parameters is critical for any manufacturing operation 

since unideal process parameter settings can lead to reduced surface integrity or 

productivity. For wire EDM, knowledge about parameter settings is even more 

important since the improper selection of parameters can lead to process failures 

by wire breakage. The current wire EDM machine has the capability to adjust the 

following process parameters.  

Pulse on time: Pulse on time is defined as the time duration during which the 

voltage is applied between the electrodes. During the pulse on time, a portion of 

the duration is consumed for ionizing the dielectric. This time period before the 

discharge is called ignition delay time. Remaining portion of pulse on time is the 

discharge duration, where the material removal takes place through melting and 

vaporisation of workpiece. Ideally, higher pulse on time is accounted for greater 

material removal and vice versa. 

Pulse off time: Pulse on time is followed by pulse off time, defined as the time 

duration during which the DC voltage across the electrodes is turned off by the 

pulse generator. This off period is utilized by the machine to clear the debris and 

thus to restore the dielectric properties in the spark gap. Insufficient pulse off time 

can lead to partial clearing of debris leading to machining instabilities. 

Servo voltage: Servo voltage controls the inter electrode gap using an inbuilt gap 

control system. The servo voltage is the average interelectrode voltage set by the 

operator, based on which the spark gap distance is maintained by an in-built servo 

feedback mechanism. Higher the servo voltage, larger is the spark gap and vice 

versa. During the spark erosion, as the workpiece material is getting removed, the 

spark gap increases momentarily increasing the average voltage between the 

electrodes. When this happens, the average inter electrode voltage crosses the 

servo voltage value to a higher value. Then the gap controller advances the wire 
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electrode towards the workpiece in such a way that the average gap voltage is 

brought back to the servo voltage parameter value.  

Wire feed rate: During the spark erosion process, the material gets removed from 

both the workpiece and wire electrode. To prevent wire breakage due to this rapid 

wear, fresh wire is continuously supplied to the machining zone from a wire 

supply spool. The rate of supply of fresh wire from the spool is given by the wire 

feed rate. Lower than ideal wire feed rate can cause simultaneous sparks from 

same wire spot resulting in wire breakage. Higher than required wire feed rate 

causes wastage of wire electrode.  

Pulse current: Pulse current is the average discharge current per pulse cycle. 

Wire EDM machines normally allows the pulse current to be varied in two modes, 

power mode for rough cut operation, and fine mode for trim cut operation 

respectively. Power pulse mode is used for regular profile cutting, whereas fine 

mode is employed to remove the recast layer and for a better part quality. During 

finishing operation, the peak pulse current is 10 A. During the rough-cut 

operation, the peak pulse current can reach 40 A.   

 

 

 

 

 

 

Fig. 1.5 Discharge characteristics during an EDM cycle showing pulse on and 

pulse off cycles (Fabrizia Caiazzo et al., 2015) 

Flushing pressure: The flushing pressure controls the dielectric flushing 

pressure from the top and bottom nozzles. The dielectric fluid flushing pressure 
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can be varied in a wire EDM. Higher pressure is selected during the roughing 

operation for effective removal of debris from the spark gap. During trim cut, 

lower pressure is sufficient due to lesser amount of debris. Also, then the higher 

pressure can cause geometric inaccuracies (Sharma et al., 2015).  

Depending on the EDM machine, several other parameters like wire tension can 

be tuned manually. The discharge characteristics showing the discharge current, 

discharge voltage, pulse on and pulse off time are given in Fig. 1.5.  

1.3.4 Applications of Wire EDM 

Wire EDM is used to cut complex and intricate profiles in difficult to cut 

conductive materials. The process can machine hard, brittle and fragile parts 

alike, since it offers near zero cutting forces due to non-contact cutting action. 

Typical applications include machining of fixtures, cams, gauges, gears, punches 

and dies. The process is also used to produce micro electrodes for micro EDM, 

micro USM etc. Several advancements have been made in the past decade to 

enhance the surface integrity of wire EDM machined components to replace 

conventional machined components in aerospace applications. Wire EDM is an 

attractive alternate to replace the broaching operation to machine fir tree slots and 

fir tree roots in turbine blades and discs (Klocke et al., 2014; Anurag, 2018). Fig. 

1.6 shows a few wire EDM cut components to showcase the process capabilities.  

1.3.5 Process stability of wire EDM 

Process stability of wire EDM depends greatly on the spark gap condition. 

Typically for a wire EDM process, it is expected that the debris and gas vapours 

produced during the discharge cycle is flushed away from the inter electrode 

volume during the pulse off cycle. In such a situation, the dielectric breakdown 

during the discharge is followed by restoration of electric properties of dielectric 

fluid (Kawata et al., 2017). The current discharges are preceded by an ignition 

delay time, which is the time taken for ionization of dielectric fluid till it becomes 

conductive. Such discharges repeat themself, each spark accounting for material 
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removal in the form of a crater, to effectively machine the workpiece in the 

required profile.  

 

 

 

 

 

 

 

 

 

Fig. 1.6 Wire electric discharge machined components  

(a)Various profiles cut by wire EDM (Sommer and Sommer, 2017)  

(b) Miniature gear machined by WEDM (Zhidong et al., 2014)  

(c) WEDM cut firtree slot (Klocke et al., 2014a)  

(d) WEDM of firtree root slot (Soo et al., 2013) 

The above-mentioned discharge cycle behaviour is an idealized concept, typically 

used to explain the process mechanism of wire EDM. However, in most practical 

cases, the debris generated are only partially removed by the flushing action of 

dielectric. Under certain extreme circumstances, the debris can get accumulated 

in the spark gap, causing permanent stagnation and spark gap bridging. 

Machining conditions that promote the debris stagnation are considered as 

unstable conditions. The severity of the instability and its implications depends 

upon how fast the debris is getting accumulated. Unstable process conditions can 

a)

b) c) d)
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lead to coarser surfaces, poor surface integrity, part damages and process 

interruption through wire breakages (Descoeudres, 2006). Fig. 1.7 demonstrates 

the comparison between spark gap condition for a stable and unstable machining.  

 

 

 

 

 

Fig. 1.7 Comparison of spark gap condition (a) during stable machining                  

(b) during unstable machining (Pan et al., 2017) 

Duty cycle is defined as the ratio of pulse on time to total cycle duration. Selection 

of duty cycle plays an important role in deciding the machining stability. As the 

duty cycle increases, possibility of debris accumulation in spark gap is more. This 

is because, at higher duty cycle, amount of debris is more, but the time to flush 

away the debris is less. Another determining factor is the spark gap distance. The 

chances of stagnation are more in a narrow spark gap, compared to a wider one. 

Process can also be unstable if the dielectric fluid pressure is less than ideal to 

force the debris out from the spark gap, especially during a rough-cut operation. 

Apart from the above discussed control parameters, several other factors also 

contribute to the process instability. The higher order interactions between the 

parameters, can make the process unstable. Also, the uncontrollable external 

factors like wire vibration, ambient temperature, wire EDM vibrations, etc. 

causes stochastic conditions in the spark gap (Fan and Bai, 2018). In short, the 

mechanism of machining failures caused by process instabilities is a complex and 

unpredictable phenomenon. An accurate model relating the control parameters 

and process failures is thus difficult to develop. A better way to analyse 
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machining stability would be to look into the discharge characteristics which is 

discussed in the following subsection (Bergs et al., 2018).  

1.3.5.1 Types of discharge pulses  

Four types of discharges can happen between the wire electrode and workpiece. 

Voltage and current pulse cycles are both required to differentiate between the 

discharge pulses. Fig. 1.8 shows the various discharge pulses.  

Normal discharge: The normal spark discharge is the one where discharge 

current occurs after an ignition delay period. It is the ideal discharge expected 

from a typical wire EDM pulse cycle. At the end of ignition delay period, voltage 

drops down and discharge current raises, when the conductive a plasma channel 

is formed. An optimal ignition delay period implies the proper restoration of 

dielectric properties after each discharge.  

Arc discharge: Arc discharge is characterised by a short ignition delay time. This 

implies presence of debris in the spark gap. Arc discharges are regarded as 

undesirable for a good surface integrity, since arcing can result in rougher 

surfaces and surface damages. However, often at higher cuttings rates, arc 

discharges are as common as the normal discharges.  

Short circuit discharge: The short circuit discharge happens during physical 

contact of wire electrode and workpiece. The phenomena of formation of plasma 

channel are thus absent in this case. Here, the circuit is completed physically via 

bridging of spark gap by the stagnant debris. Therefore, as soon as the voltage is 

applied, discharge happens between the electrodes without any ignition delay. 

Since the discharge is by physical contact, the voltage elevation is not seen for 

short circuit discharges. Short circuit pulses are regarded as the chief causes of 

wire breakages and surface damages, and shall be avoided to ensure stable and 

continuous machining.    

Open discharge: Open circuit discharges are misdischarges where the discharge 

current is absent for the entire duration of pulse on time. Open discharges can 

happen due to many reasons. If the applied voltage is not high enough for the 
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dielectric breakdown, or the pulse on time is too less to complete the ionization, 

or the spark gap is too high, the current discharge will not happen. Open 

discharges are not categorised under harmful discharge since it does not cause 

any part damage. But such discharges shall also be controlled to improve the 

process efficiency since the higher proportion of open circuit discharges can bring 

down the productivity (Liao and Woo, 1997; Osswald et al., 2015).  

 

 

 

 

 

Fig. 1.8 Different types of discharge pulses observed in wire EDM pulse cycle 

1.3.5.2 Process failures  

Process failures are those situations which cause material wastage, part damage, 

process interruption or energy wastage during a manufacturing process. In this 

regard, wire EDM process fails during wire breakages and spark absence. 

Predominance of arc and short circuit sparks are considered as the main reasons 

for wire breakage. Wire breakage causes process interruption and can cause part 

damages and material wastage. Often the wire breakage is associated with 

permanent surface damage in the workpiece too. Even if the damage is negligible, 

resuming the machining operation after rethreading can cause burrs and surface 

marks. Wire breakage also hinders the overall productivity and causes energy 

wastage since the time for rethreading is unproductive. Frequent wire breakages 

demand manual intervention and it affects the process automation. Another 

process interruption is spark absence situation, where the spark frequency reduces 

to zero soon after the commencement of machining. This situation also affects 
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the productivity and cause wire material wastage, and energy wastage. Open 

circuit discharges discussed in the previous subsection is regarded as the main 

cause of this failure (Cabanes et al., 2008; Gamage et al., 2016).  

1.4 CONDITION MONITORING OF WIRE EDM 

Wire EDM condition monitoring is aimed at preventing process failures like wire 

breakages and spark absence to ensure the required part quality. The monitoring 

system consists of suitable sensors to measure certain process data, which can 

indicate the machine health condition. The machine heath indicators are the 

extracted features from the raw data, which can give information about the future 

process failures. Condition monitoring systems are extremely customizable due 

to the wide variety of sensors available to measure various physical quantities. 

Current sensor, voltage sensor, acoustic sensor, vision-based sensors, infrared 

camera, accelerometer are some of the sensors employed to develop wire EDM 

condition monitoring systems. Real time data from the sensors are sent to a 

workbench or computer system through an analog to digital converter (ADC). 

The signals are typically filtered to avoid noises and for easier extraction of 

relevant features. The extracted features will act as wire EDM process heath 

indicators. Most of such systems predict wire breakages process interruptions. 

Advanced adaptive control systems can take preventive measures in case failures 

are predicted. The process control is performed by tuning one or more control 

parameters to restore the machining stability.  

1.5 OUTLINE OF THE THESIS 

To develop a condition monitoring system for the wire EDM process, the current 

study is divided into eight chapters. The brief summary of the chapters is given 

below.  

CHAPTER 1 

The chapter introduces the concept of smart manufacturing and the significance 

of machine condition monitoring in it. Basics of wire EDM process, including the 

mechanism, control parameters, capabilities, and process challenges are 
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discussed. Different kinds of wire EDM process failures and the reasons behind 

them are discussed. The idea and various steps involved in wire EDM condition 

monitoring are presented.  

CHAPTER 2 

The chapter comprehensively discusses the state of the art in the field of wire 

EDM condition monitoring. The literature that deals with wire EDM process 

optimization, soft computing techniques, machine condition monitoring, wire 

EDM condition monitoring are discussed as various subtopics. Based on the 

literature review, the research gap and motivation are described. Finally, the 

chapter concludes by presenting the research objectives.  

CHAPTER 3 

The details of the experimental work are discussed in this chapter. Initially, the 

basic experimental setup, material selection, experimental design and soft 

computing techniques are discussed. The chapter also details the features of 

sensors and acquisition system to setup the proposed condition monitoring 

system. The overall experimental plan of the research is presented next. Finally, 

different instruments and equipment used to analyse and measure wire EDM 

performance are described.  

CHAPTER 4 

Analysis of machining stability of wire EDM is presented in this chapter. Process 

stability is varied in different stages and the process performance and failure 

mechanism is analysed. Two types of process failures, wire breakage and spark 

absence are discussed in detail. Surface integrity of machined components at 

different levels of process stability are also analysed.  

CHAPTER 5 

The chapter deals with development of soft computing models to classify and 

predict process failures. ANN classification is employed to classify the 

machining outcomes into process failures and continuous uninterrupted 
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machining. Additionally, an ANFIS model is developed to predict mean gap 

voltage variation, based on which wire breakages can be predicted. These 

computationally fast offline techniques are used to set initial process parameter 

settings, before the start of condition monitoring.  

CHAPTER 6 

The chapter discusses the setting up of process monitoring system using current 

and voltage sensors. Based on the extracted features, a pulse classification 

algorithm is developed to categorise the wire EDM pulses into normal sparks, arc 

sparks, short circuit sparks, and open circuit sparks. The effect of process 

parameters on discharge characteristics are discussed. The pulse train behaviour 

during normal machining and failure conditions are compared and analysed. 

CHAPTER 7 

An algorithm for failure prediction and control is proposed in this chapter. The 

prediction is based on extracted features from raw signals. The severity of the 

predicted failures is assessed, based on which process parameters are retuned by 

the control algorithm. The process performance is also predicted with better 

accuracy using in process data and input parameters as model input.  

CHAPTER 8 

This chapter concludes the major findings from the research study on the 

development of condition monitoring system for wire EDM process. Also, the 

future scope of research is presented.   
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CHAPTER 2 

LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter reviews the contribution of researchers in the field of condition 

monitoring of wire EDM. The significance of machining stability of wire EDM 

on process performance and wire break failure is discussed initially. Then, 

various soft computing predictive models for wire EDM process is reviewed. 

Various research works on machine condition monitoring systems are discussed 

briefly, after which an elaborate discussion on wire EDM condition monitoring 

is presented. The section covers the state-of-the-art pulse classification 

techniques, fuzzy control models, wire vibration control models, and wire break 

detection and control systems. Further, the existing adaptive control techniques 

for wire EDM process is reviewed. The chapter concludes by discussing the 

research motivation and listing the objectives of this study. 

2.2 IMPACT OF INDUSTRY 4.0 

The synthesis of cyber and physical systems (CPS) has given rise to the fourth 

industrial revolution. In this ongoing trend, the physical manufacturing systems 

works in union with advanced communication and computational technologies 

like internet of things, artificial intelligence, cloud computing, big data analytics, 

advanced sensor technologies, automated process monitoring, control and 

inspection systems etc. The industry 4.0 involves smart design, smart 

manufacturing, smart monitoring, smart inspection, smart scheduling, and 

logistics. Literature covering these aspects are briefly reviewed in this section. 

Smart design: Conventional product design has given way to advanced systems 

of product realization and visualization like virtual reality, augmented reality, 3D 

printing etc. A design developed in CAD environment can be visualized in three 

dimensions using a suitable AR/VR device. The prototyping, assembly, 



 
 

20 
 

inspection and testing can now be conducted in the advanced interactive virtual 

environment before the prototype is actually built. This gives the designers 

endless opportunities to visualize, share, test and calibrate the design before 

design finalization (Ong et al., 2008). 3D printing has grown in its capabilities 

and have become cheaper allowing the designer to directly conceive the actual 

product from a CAD drawing, which accelerates the prototyping and testing 

stages (Bogue, 2013).  

Smart machining: The concept involves integration of several smart machines 

and components that communicate with each other. Smart machine tools are 

sensor equipped, capable of collecting and communicating data in real time. All 

the physical objects involved in a smart machining system are identifiable, and 

can communicate with one another through a uniform data code. MTConnect is 

one such standard communication code for easier data collection and sharing. The 

machining data statistics and reports are generated and stored using standard 

management tools like enterprise resource management (ERP) (Zeng et al., 

2018). This eases data handling and analysis. The real time manufacturing data, 

combined with the historical data, assists in machine health prognostics. Through 

the in-process data and augmented reality, the machining status can be virtually 

visualised, enabling smart interactions and decision making by the operator. 

Smart machines are also capable of real time process optimization and quality 

control (Park and Tran, 2014). 

 

 

 

 

 

Fig. 2.1 Typical subcomponents of health and usage monitoring system 

(HUMS) (Janak and Hadas, 2015) 
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Smart process monitoring and control: Smart monitoring involves real time 

sensing of manufacturing data containing information about machine health and 

performance. Sensor technology has advanced in flexibility and capability in 

recent times. Sensors are available in different bandwidth and measuring ranges 

to measure various physical quantities like temperature, force, vibration, 

acoustics, voltage, and current (Zeng et al., 2018). Vision based sensors have 

opened an entirely new research area for process monitoring through image 

processing. Smart monitoring systems has the following capabilities (Cheng et 

al., 2010): 

• Alerting the user about a potent failure 

• Minimizing the maintenance time and expenses 

• Minimizing the downtime of manufacturing system 

• Collect, process, and store data to expand the knowledge base for better 

decision making in future 

Main components of a smart monitoring system as proposed by Hadas (2015) is 

given in Fig. 2.1. Lee et al. (2014) observed that advanced monitoring system 

senses the real time machining data and based on the machine health, feedback 

signals are sent to the controller for online parameter tuning. Such a system can 

prolong machine operation through data driven, intelligent decision making. 

Multi sensor fusion is utilized by advanced monitoring systems to simultaneously 

collect and analyse multiple sensor data to make a better-informed decision (Zhu, 

2019). Xia et al. (2018) proposed a convolution neural network-based monitoring 

system to process multi sensor data. The proposed method was found superior in 

performance compared to conventional techniques for the case of bearing fault 

monitoring, and gearbox fault diagnosis.  

Smart data analytics: Sensor integrated manufacturing systems are producing 

enormous amount of data during each second, making data handling a difficult 

task. Smart data analytics involves the extraction of right features, analysis of the 

processed data, coining the decision-making algorithms from the plethora of 
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available data (Yan, 2007). An overlook of smart data analytics’ components is 

given in Fig. 2.2. 

 

 

 

 

 

Fig. 2.2 Smart manufacturing system based on advanced data analytics                

(Yan, 2007) 

2.3 WIRE EDM CAPABILITIES 

Wire EDM is one of the best cost-efficient processing techniques to machine hard 

materials. The non-contact material removal mechanism coupled with CNC 

controlled wire electrode motion, makes the process capable of cutting any 

intricate, complex, and precise shapes with great flexibility and control. 

Machining of superalloys, which is considered as difficult to cut conventionally, 

is one of the most sought application of wire EDM. Superalloys are high 

performance materials, which can retain its superior mechanical properties even 

at temperatures close to its melting point (Reed, 2006). The conventional 

machining of superalloys is considered difficult due to the tendency of 

superalloys to strain harden during machining, formation of built-up edge, 

entanglement of continuous chips, poor heat dissipation due to low thermal 

diffusivity causing high heat generation at tool chip interface, and higher 

tendency of chemical reaction with tool material (Thellaputta et al., 2017; Thakur 

et al., 2009). Many non-traditional techniques like laser beam machining, 

abrasive water jet machining, electro chemical machining, and electro discharge 

machining were attempted in the past to overcome these limitations. Such non-

traditional processes offer near zero cutting forces and residual stresses, due to 
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their non-contact material removal mechanism. Even then, many of these 

techniques have a few limitations which restricts their wide usage in machining 

superalloys. Laser beam machining has a larger thermal impact and thicker recast 

layer (Zhong et al., 2005), die sinking electric discharge machining requires 

specific tooling and is less flexible, electro chemical machining requires specific 

tooling, has low material removal rate and can cause corrosion (El-hofy, 2005). 

Abrasive water jet machining cannot be used to machine ductile materials and 

residues of abrasive particles will be embedded into the work material      

(Holmberg et al., 2019).  

Wire EDM process has all the advantages of the EDM process, and additionally, 

it is more flexible and does not require any specific tooling requirement or setting 

up time. The recast layer can be greatly minimized by controlling the spark 

energy, and the residual stresses are minimum for the process (Yan and Lai, 

2007). One of the main applications of superalloys is in the aerospace industry 

due to the materials superior performance at elevated temperatures. In the past, 

wire EDM processed superalloys were not the preferred choice for aerospace 

applications due to the high surface integrity requirements. The thermal nature of 

material removal imparts undesirable tensile residual stresses on the wire electric 

discharge machined surfaces. Also, the recast layer formed on the wire EDM 

processed surface contains numerous micro cracks which can lead to fatigue 

failure of components (Velterop, 2003). However, since then many researchers 

have studied upon the capability of wire EDM for manufacturing aerospace 

components and have reported positive results. Klocke et al. (2012) evaluated the 

process performance of wire EDM during the machining of Inconel 718 and 

observed that the process has the potential to replace broaching to produce fir tree 

slots in gas turbine discs. The surface integrity requirements of gas turbine 

components, namely surface roughness of less than 0.8 μm, near zero white layer 

thickness and geometrical accuracy in producing the fir tree profile was achieved 

using the wire EDM process as shown in Fig. 2.3. Antar et al. (2012) studied the 

fatigue life of wire EDM finish cut Udimet 720 and reported no significant 

difference to the milled component’s fatigue life. Welling (2014) compared the 



 
 

24 
 

surface integrity and fatigue strength of wire electric discharge machined Inconel 

718 with that of broaching and grinding. Wire EDM process was found to achieve 

the industrial surface integrity requirements. The fatigue strength of wire EDMed 

components was comparable to that of broaching process. Anurag (2017) 

observed that wire EDM can potentially replace broaching process to machine 

future aero components using gamma titanium aluminides.  

 

 

 

 

 

 

Fig. 2.3 Surface integrity of wire electric discharge machined firtree slot 

(Klocke et al., 2012) 

Wire EDM is also widely used to manufacture miniature gears, dies, fixtures and 

tools. The capabilities of wire EDM process to manufacture miniature 

components was explored by Ali and Mohammad (2008). Miniature spur gears 

were manufactured on copper material using the process with Ra of 1 μm and 

with 1 % dimensional deviations. Gupta and Jain (2014) observed that wire EDM 

cut miniature gears are of superior quality than the hobbed gears. The geometrical 

accuracy and surface integrity aspects are considered to evaluate and compare the 

processes. Alhadeff et al. (2018) explored the possibility of cutting small aspect 

ratio miniature brass gears with wire EDM. Brass gears with good surface finish 

and negligible recast layer can be produced using the process. Chaudhary et al. 

(2020) optimized wire EDM process parameters while producing miniature gears 

of Nimonic superalloy. Das and Patowari (2018) manufactured micro tools for 

ultrasonic machining process using wire EDM on glass substrates. Micro tools of 



 
 

25 
 

square, circular and zig-zag geometries were manufactured with good accuracy 

in the study.  

The process is also widely used to produce micro features like textures, channels, 

and fins. Miner et al. (2013) machined micro channel arrays on copper using wire 

EDM with 0.6 μm to 0.8 μm Ra. Debnath and Patowari (2019) evaluated the 

machinability of wire EDM cut micro square fin arrays on copper and stainless 

steel. The quality of micro pins was found acceptable through SEM images and 

EDS analysis. The dimensional accuracy was better in stainless steel compared 

to copper. Ahmed et al. (2020) conducted experimental study to maximize micro 

channel per area in copper by minimizing inter fin distance. Wire EDM was 

observed to be a suitable processing method to manufacture micro channels in 

copper workpiece.  

Wire EDM is theoretically capable of machining any conductive materials. The 

process is especially used to cut hard components which are difficult to cut by 

conventional machining. Wire EDM of Nickel based superalloys has been 

investigated by several researchers in the past. Extensive researches are done on 

wire EDM performance during the machining of Inconel 718 (Li et al., 2014; 

Klocke et al., 2014; Karidkar et al., 2018; Tonday and Tigga, 2019), Inconel 825 

(Rajyalakshmi and Ramaiah, 2013), Inconel 706 (Sharma et al., 2015; Sharma et 

al., 2016), Nimonic 80A (Goswami and Kumar, 2014) and Nimonic C 263 

(Mandal et al., 2016; Mandal et al., 2017). Apart from superalloys, wire EDM of 

Titanium alloys is also a topic of research interest. Notable works on wire EDM 

of Ti-6Al-4V are conducted by Prasad et al. (2014), Pramanik and Basak (2018), 

and Kumar et al. (2019). Wire EDM of various grades of steel have been 

performed by researchers in the past, which includes investigations on high speed 

steel (Kumar et al., 2018), AISI O1 tool steel (Camposeco-Negrete, 2019), 

stainless steel (Debnath and Patowari, 2019), and medium carbon steel 

(Alduroobi et al., 2020). Wire EDM of NiTi shape memory alloy was investigated 

by Chaudhari et al. (2019) and Das and Chakraborthy (2020). Many researchers 

have studied the wire EDM machinability of metal matrix composites like 
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Al7075/SiCp (Rao, 2016; Phate and Toney, 2019), ZC63/SiCp (Rao and Krishna, 

2013) and Al / ZrO2 (Garg et al., 2013).  

2.4 MACHINING STABILITY OF WIRE EDM 

Machining stability of wire EDM process depends on numerous factors including 

dielectric flushing, restoration mechanism, debris stagnation, wire vibrations, 

wire lag effect, discharge energy, pulse characteristics, and thermal aspects. The 

machining is considered as stable, if the required profile is machined without 

process failures and with acceptable surface integrity. On the other hand, an 

unstable machining process is characterised by the following situations: 

• Debris accumulation which can lead to surface damages and wire 

breakage (Cabanes et al., 2008a). 

• Wire lag effect, wire deflection, and wire vibrations leading to geometric 

and corner inaccuracies (Arunachalam et al., 2001). 

• Excessive thermal load on the wire (Cabanes et al., 2008a). 

• Spark gap fluctuations (Klocke et al., 2014b) 

• Other process interruptions which cause material and energy wastage.  

The process stability was studied by researchers in the past by considering the 

various factors described above. A few researchers have come up with numerical 

models to simulate the wire EDM process mechanism and wire breakage 

phenomena. Rajurkar and Wang (1993) observed that the thermal load on the 

wire is responsible for wire rupture. The rupture mechanism was studied based 

on a thermal model. Arunachalam et al. (2001) developed a computational model 

to evaluate the wire stresses aimed at understanding the wire lag, wire vibration 

and breakage phenomena by considering a copper bar as the work material. The 

primary cause of wire breakage is observed as increased wire stress. The authors 

have considered wire wear, electrostatic forces, spark pressure, and 

electromagnetic force as the four main reasons for increased wire stress. The two 

types of wire breakages are observed – type I and type II, depending on whether 

the wire breakage is late or immediate. The discharge energy was increased 
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sequentially to determine operating regions for the wire EDM as shown in Fig. 

2.4. Saha et al. (2004) developed a finite element model to accurately predict the 

thermal load on the wire electrode. The study observes that the heat generated 

during the spark discharge is the key factor responsible for wire breakage failure. 

The internal heat generated, temperature, and stress distribution along the wire 

length for different materials are predicted by the model. Banerjee (2009) studied 

the effect of clustering of sparks on wire electrodes by developing a thermal 

model. Spark clustering is observed to increase the thermal load intensity on wire 

electrodes and can potentially lead to wire breakage. The spark distribution is 

randomized in this model with predicted peak temperature indicating risks of wire 

rupture. Okada et al. (2015) developed a CFD model to analyse wire deflection, 

debris stagnation period in the spark gap, and hydrodynamic stress distributions 

in wire. Based on the numerical analysis, debris stagnation and wire deflection 

are found as the dominant factors which affects wire breakage. Wire deflection is 

observed to be caused by electrostatic forces, forces due to discharge sparks, and 

hydrodynamic forces due to dielectric flushing. Mohapatra et al. (2016) 

developed a 3D finite element model to analyse the thermal and structural factors 

leading to wire breakage. Temperature, heat flux and stress generated are 

computed by the finite element model. Kawata et al. (2017) studied the debris 

stagnation, flow variations in spark gap, and wire electrode deflection when wire 

EDM operation starts from a start hole. The analysis was conducted by CFD and 

structural examination. The work presented an interesting observation that the 

wire breakage frequency is more at a certain machined length where the debris 

stagnation is more and wire deflection is moderately high. At start of the 

machining, the debris stagnation is highest due to less dielectric flow rate, but 

wire deflection is negligible. After a particular machining length, the deflection 

is high, but debris stagnation is reduced. In between these two extremes, the 

researchers have observed maximum wire breakage occurrences. Ebisu et al. 

(2018) developed a computational fluid dynamics (CFD) model to study and 

control wire lag and wire break during corner cutting. It was observed that debris 

stagnation can be regarded as chief cause of wire breakage. Also, increasing the 
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dielectric pressure to force the debris away from the spark gap causes wire 

vibration and deflection, which can cause geometric inaccuracies. From the 

simulation of flow field and debris motion, it was revealed that the flow field 

changed significantly with excess debris stagnation at a corner profile. Also, the 

flushing pressure affected the wire deflection equally to that of discharge force.  

 

 

 

 

 

 

 

Fig. 2.4 Regions of wire breakage (Arunachalam et al., 2001) 

Another approach by the researchers was to study the crater formation in wire 

electrode to understand wire breakages. Luo (1999) studied the mechanism of 

wire rupture by investigating the mechanical failure mode and wire electrode 

strength. The situation is modelled as plane stress problem with Airy’s function 

to describe the distribution of stress. Fracture toughness of wire electrode is 

computed based on stress intensity factor and energy release rate. The stress 

intensity factor is found to increase with dielectric pressure and crater size. Yield 

strength and fracture toughness under axial wire tension and dielectric flushing 

pressure are studied. Both the factors are found to be influential in wire rupture 

mechanism. A temperature rise was found to intensify the wire rupture 

mechanism by reducing the strain hardening. Tosun and Cogun (2003) 

investigated the effects of wire EDM process parameters on the wire wear ratio 

by considering AISI 4140 steel as the work material. The wire wear rate was 

found to increase with pulse duration and open circuit voltage, whereas the same 
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decreased with wire feed rate and flushing pressure. They also observed that 

higher wire wear ratio is associated with high material removal rate and machined 

surface roughness parameter, Ra. Tosun et al. (2003) has also performed an 

investigation on variation of wire crater dimensions with input parameters by 

considering AISI 4140 steel as the workpiece material. The diameter and depth 

of the crater is found to increase with pulse duration, wire feed rate and open 

circuit voltage. Pramanik and Basak (2018) studied the wire breakage failure 

mechanism in an attempt to improve wire EDM process sustainability during the 

machining of Ti-6Al-4V alloy. The wire failure is reported to occur in two modes: 

sudden rupture or after gradual decrease of wire cross section. Increased wire 

tension and reduced flushing pressure was observed as primary reasons for wire 

breakage failure. Also, debris accumulation causing arc discharges was found to 

result in instantaneous temperature rise resulting in wire breakage.    

2.5 SOFT COMPUTING TOOLS TO PREDICT WEDM 

PERFORMANCE 

Modelling and prediction of wire EDM performance is challenging due to the 

stochastic nature of the process. This is mostly because of the complex material 

removal mechanism of wire EDM process. Also, the process is influenced by 

several random and uncontrollable external factors. Earlier attempts to model 

wire EDM performance was through regression analysis. However, due to the 

advent of artificial intelligence, soft computing tools are widely used to model 

complex real-world phenomena. The soft computing tools are capable of arriving 

at approximate, but acceptable solutions, which are difficult to compute using 

conventional techniques. Artificial neural networks (ANN), swarm intelligence, 

and fuzzy logic are some of the widely used soft computing tools. Such 

techniques can learn the patterns from the training data to accurately model the 

input output relationships even for complex, multi-dimensional, higher order 

problems.  

Ramakrishnan and Karunamoorthy (2008) developed an ANN model to predict 

material removal rate (MRR) and surface roughness during wire EDM of              
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Inconel 718. A back propagation algorithm was chosen to tune the neural network 

parameters. Analysis of variance study revealed that pulse on time, ignition delay 

time, and pulse current are the most significant factors which influence the 

performance characteristics. ANN modelling of wire EDM process was also 

conducted by Markopoulos et al. (2008) by considering structural and high 

strength steels. The predictions are reported to be accurate with an R value of 

0.904. Shakeri et al. (2016) compared the prediction accuracy of ANN and 

regression models during the wire EDM of alloy steel. The mean prediction error 

of the feed forward back propagation neural network model and regression model 

are reported to be 0.773 % and 2.547 % respectively. Alduroobi et al. (2020) have 

reported a prediction accuracy of 98 % for ANN model to predict MRR and 

surface roughness during wire EDM of AISI 1045 steel. Pulse on time is the most 

significant factor affecting the process performance, followed by pulse off time. 

Majumder and Maithy (2018) compared the accuracy of general regression neural 

network (GRNN) model and statistical regression analysis to predict response 

parameters during wire EDM of Ti- grade 6. GRNN model was found to be 5% 

more accurate than the regression model. Soepangkat et al. (2019) compared the 

optimization results using grey relational analysis (GRA) and a hybrid back 

propagation neural network (BPNN) – genetic algorithm (GA) method. The 

recast layer thickness, surface finish and crack density of machined surface are 

selected as the responses considering tool steel as the work material. BPNN was 

capable of accurately predicting the process responses and the combined BPNN-

GA is proved to be better than conventional GRA in optimizing the process 

parameters. Manoj and Narendranath (2020) developed an ANN model to predict 

profile areas during the wire EDM taper cutting. The developed model was 

successful in accurately predicting the responses with a highest error of 9%.   

Caydas et al. (2009) modelled wire EDM process using adaptive neuro fuzzy 

inference system (ANFIS) technique by considering AISI D5 tool steel as the 

work material. Recast layer thickness (RLT) and surface roughness were 

considered as performance criteria. The comparison of ANFIS predictions and 

experimental observations can be seen in Fig. 2.5. Azhiri et al. (2014) modelled 
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cutting speed and surface roughness of wire EDM in gaseous media using ANFIS 

during the machining of Al/SiC metal matrix composite. The experimental work 

was conducted based on Taguchi’s L27 orthogonal array design considering pulse 

on time, pulse off time, discharge current, gap voltage, wire feed and wire tension 

as input parameters. The prediction accuracy of ANFIS model was very high with 

a mean absolute error of 0.1 to 0.2. Pulse on time and discharge current were the 

most significant factors, with wire tension being the least significant factor based 

on ANOVA results. Maher et al. (2016) developed an ANFIS based RLT 

prediction model with 2.61 % error during the machining of AISI 1050 carbon 

steel. RLT was observed to be least at minimum pulse on time, peak current and 

maximum pulse off time. Wire tension and wire speed were observed to be 

insignificant in RLT variation. Mandal et al. (2018) modelled kerf width and 

cutting speed of wire EDM using ANFIS during the machining of ZrB2 based 

ceramic composites. Model results were compared for different membership 

function shapes and the triangular membership function yielded the least root 

mean square error. Kumar et al. (2019) found that ANFIS model has a better 

prediction accuracy than the regression model during wire EDM of titanium alloy 

Ti-6Al-4V. Later, the parameters were optimized using grey relational analysis 

(GRA). Pulse on time, pulse off time and discharge current had the highest 

influence on MRR and surface roughness, whereas dielectric flushing pressure 

had the least influence.  

 

 

 

 

 

 

Fig. 2.5 Comparison of ANFIS predictions with experimental readings           

(Caydas et al., 2009) 
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Shunmugam et al. (2000) developed a fuzzy logic model to predict wire EDM 

performance measures during the machining of Titanium alloy (Ti6A14V). The 

cutting speed and surface roughness were predicted with acceptable accuracy. 

The authors had observed that the accuracy of the model is limited by the size of 

the rule base. Nain et al. (2018) modelled wire EDM responses using fuzzy logic 

model and compared the results with back propagation artificial neural network 

(BPANN) model. Udimet-L605 was considered as the workpiece material. 

Surface roughness and waviness were the responses considered for evaluation. 

BPANN model was reported to perform better compared to the fuzzy logic 

model. This is expected since the fuzzy model is based on an expert knowledge 

and is not trainable. Due to this reason, fuzzy logic is more frequently used for 

wire EDM process control models than for performance predictions.  

2.6 PULSE TRAIN ANALYSIS AND CONDITION MONITORING OF 

EDM 

Wire EDM is a specific variant of EDM, whose process monitoring system needs 

to be addressed separately due to the particular nature of process failures by wire 

breakages. However, the process mechanism and material removal principle are 

very similar to other EDM techniques. The part quality deterioration by arc and 

short circuit sparks, debris accumulation, servo control tuning, etc. are common 

topics of research interest for any EDM process. Signal acquisition, processing 

and control techniques can also be found common for many EDM process control 

systems. Therefore, the current trends in pulse train analysis and process 

monitoring of EDM processes is to be investigated initially. In this regard, state 

of the art research in the area of condition monitoring of electric discharge 

machining, other than wire EDM, is discussed in this section. 

Liao et al. (2008) developed a pulse classification system by studying the voltage 

pulse behaviour for a micro-EDM process by considering stainless steel as the 

workpiece. The pulses were classified into normal, arc, complex, short and 

effective arc. Pulse discrimination was conducted and compared for micro wire 

EDM, milling and drilling. For drilling, as the hole gets deeper, the normal pulse 
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ratio decreases and complex pulse ratio increases. Pandey and Brahmankar 

(2016) developed an ANN model to predict arching during EDM of metal matrix 

composites (MMC). The offline model is intended to aid the operator in avoiding 

the parameters which can lead to poor surface integrity and part damage. L27 

experimental design was selected by varying input parameters, and this constitute 

the training dataset. The machining depth without arching was recorded as 

response. If no arching was observed, the entire machining depth is recorded as 

the response. For a new parameter set, if the ANN prediction is less than the total 

machining length, then arching is suspected and that settings shall be revised. 

Rajeswari and Shunmugam (2019) explored the effects of various EDM 

discharge pulses in die sinking EDM operation of hardened D3 die steel. Process 

is optimized for both roughing and finishing by considering novel performance 

indexes namely, energy spent in one second, and the ratio of spark energy over 

total energy spent. Pulse classification was performed and discharge 

characteristics were extracted by setting thresholds. 

 

 

 

 

 

 

 

 

 

Fig. 2.6 High speed EDM pulses (Zhang et al., 2020) 
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Zhang et al. (2020) proposed a novel pulse classification method for high speed 

EDM using recurrent neural network during the machining of AISI 1045 carbon 

steel. 30000 samples were considered for training and the labelled samples are 

fed to the model. 3 different RNN were compared for classification accuracy, 

namely traditional, long short-term memory (LSTM), and independently 

recurrent neural network. Among these, LSTM fetched the best classification 

accuracy of 97.85 %. The different pulse shapes identified are shown in Fig. 2.6. 

Mwangi et al. (2020) performed pulse train analysis and studied the effect of 

arching on material properties during micro EDM of Nitinol. Experiments were 

conducted by sequentially increasing the discharge energies. Arcing was 

observed at higher discharge energies, which also accelerated the tool wear rate. 

Arcing was observed to degrade the mechanical properties, especially fatigue 

strength. The authors recommend to avoid the arc inducing discharge energy 

levels completely, since the extend of surface damage clearly outweighs the 

advantage in productivity improvement. Xia et al. (2020) proposed a breakout 

detection technique for EDM drilling of Cr12 steel workpieces by classifying 

pulse signals. Breakout happens when a though hole is almost made, but the 

actual machining is yet to complete. Its online detection is important, since 

parameters shall be adjusted at this point to stop inward feed when machining 

completes to avoid damages to other workpiece parts. The normal pulse ratio, 

short circuit pulse ratio and servo feed are chosen as the input signals to the 

random forest classification model. The model classifies the machining condition 

into ‘before breakout’ or ‘after breakout’. The trained model was reported to have 

good classification accuracy and fast response time.  

2.7 CONDITION MONITORING AND PROCESS CONTROL OF 

WEDM 

The stochastic nature of the wire EDM process has led to complexity in modelling 

the performance characteristics and wire break failure. Intervention of several 

random, uncontrollable factors reduces the model accuracies. Therefore, it is 

better to relate the discharge characteristics with the process performance using 
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a condition monitoring setup. Through such a system, the occurrence of failure 

can be predicted and controlled better. A condition monitoring system is aimed 

at forecasting a potent process failure before any actual harm is done, providing 

enough time to take preventive measures. Researchers in the past have come up 

with various methodologies for wire break prevention and process control of wire 

EDM process. Those approaches are categorized and discussed in the following 

subsections.     

2.7.1 Classification of wire EDM discharge pulses 

The discharge pulses happening between the wire electrode and workpiece is the 

most important characteristic of wire electric discharge machining. The attempt 

to monitor and control the wire EDM process have to start with understanding 

and categorising the discharge pulses. Liao and Woo (1997) described a pulse 

classification algorithm to categorise the wire EDM discharge pulses while 

considering tool steel as the workpiece material. The proposed method involves 

measuring current and voltage signals by voltage divider and current probe 

respectively. Three types of discharges are reported, namely, arc, short and 

normal. Three types of machining instabilities are reported based on the increase 

of arc and short sparks. Janardhan and Samuel (2010) developed a pulse 

discrimination algorithm for wire electric discharge turning process of brass 

material. The algorithm is also capable of computing the ignition delay time, and 

discharge width. The pulses are classified by setting threshold values for voltage 

and current signals. Depending upon the time taken to cross the threshold and 

peak discharge voltage, pulses are classified to open, short, arc and normal as 

shown in Fig. 2.7.  

Klocke et al. (2012b) observed that, to develop a process monitoring system, the 

specific values for discharge characteristics have to be found out. All the relevant 

features for process monitoring are extracted based on these values. Some of 

these values may be machine and generator specific and have to be 

experimentally found. Many deformed discharges were observed with short 

circuits, misdischarges, and delayed pulses. The classification algorithm sets 
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rules based on voltage and current values to distinguish between pulses. The 

unideal discharges lead to less productivity, surface damages, and wire 

breakages. Inconel 718 was considered as the workpiece material.  Yan and Hsieh 

(2014) used a pulse classifier device consisting of gap monitor and signal 

processor card to discriminate between normal, open arc and short sparks during 

the wire EDM machining of SKD11 tool steel. The proportion of each pulses, 

along with ignition delay time are computed for monitoring the process. The 

authors propose that such a system can replace the monitoring systems based on 

average gap voltage, which were employed till then. Zhang et al. (2015) proposed 

a two-stage pulse classification model using support vector mechanism and 

random forest by considering copper, SKD 11, and tungsten steel as workpiece 

materials. Firstly, from the filtered voltage signals, support vector categorises 

pulses into open, short and other pulses. In the next stage, Random forest 

classifies the other pulses into arc, transition type and normal spark discharges.  

 

 

 

 

 

 

 

Fig. 2.7 Different types of wire EDM discharge pulses on a pulse train                                      

(Janardhan and Samuel, 2010) 

An advanced feature extraction technique to extract discharge characteristics for 

wire EDM of steel material was proposed by Caggiano et al. (2015). The study 

was aimed at extracting uncommon features by sensor fusion in order to predict 
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surface damages occurring due to process instability. The methodology for 

extracting various features from current pulse, voltage pulse, and the combination 

of both signals are described. Some of the features extracted are short circuit ratio, 

short circuit duration, open circuit ratio, spark frequency, ignition delay time etc. 

Osswald et al. (2018) categorised the high-speed wire EDM pulses into five types 

while machining stainless steel. The pulses are categorised as EDM discharge, 

thermal breakdown discharge, arc, short and open circuit discharge. The short 

circuit pulses are further categorised into hard and soft short circuit pulse. Spark 

gap bridging by severe debris stagnation causes soft type, and physical wire-

workpiece contact causes hard short circuit spark. The arc and short pulses, 

characterised by negligible ignition delay time, are observed as undesirable, since 

it causes surface damage and wire breakage. Conde et al. (2018) classified the 

discharge pulses into four, based on the ignition delay duration during the wire 

EDM of AISI D2 steel. The pulses are named as D0, D1, D2 and D3 in the 

increasing order of delay time. D0 and D1 essentially represents the short circuit 

and arc sparks.  

2.7.2 Fuzzy logic models for process control 

Fuzzy logic tool is known to process inaccurate and less precise information to 

give acceptable results. The model is flexible, and is based on simple if-else rules. 

For an experienced process expert, the fuzzy rule sets are easy to develop based 

on logical statements. Due to these reasons, fuzzy based control systems can be 

equipped in the wire EDM to give adequate process control. Thus, the earlier 

attempts for condition monitoring and process control were mostly fuzzy logic 

based. Yan and Liao (1996) modelled a fuzzy logic controller which self-adjusts 

pulse off time based on spark frequency to prevent wire breakages during the 

machining of tool steel. The researchers observed two types of wire breakage 

mechanism based on whether the spark frequency rise is sudden or gradual. Later 

they (Yan and Liao, 1998) developed a fuzzy based adaptive control system for 

wire EDM process based on harmful (short, arc) spark ratio and spark frequency. 

The effect of these features on material removal rate, surface finish and wire 



 
 

38 
 

breakage were also investigated. The model keeps sparking frequency below a 

threshold to prevent wire breakage, while adjusting pulse off time and servo feed 

based on abnormal spark ratio to ensure machining stability. Yan et al. (1999) 

proposed a fuzzy based servo feed control strategy to improve machining stability 

and to prevent wire breakage during the machining of SKD11 tool steel. The 

process control is achieved by monitoring and maintaining the spark gap voltage. 

Liao and Woo (2000) designed a fuzzy based process controller for wire EDM of 

SKD11 die steel based on short circuit spark ratio and power consumption. Fuzzy 

rules were formulated based on experience and discharge behaviour. Pulse off 

time is regulated to keep short spark ratio in check. Machine feed is adjusted to 

match the consumed power to a reference value. Bufardi et al. (2017) used a 

combined online-offline fuzzy logic approach to prevent surface damages. Recast 

layer thickness and surface roughness are considered as the responses. Offline 

model is proposed to set the initial process parameter. Online model adjusts pulse 

off time based on short circuit duration and pulse frequency in real time to 

regulate the surface integrity  

2.7.3 Wire lag and vibration control  

Beltrami et al. (1996) proposed a wire position control algorithm based on real 

time wire position measurement using optical sensors. It was observed that wire 

lag and deflection have a significant impact in reducing the geometric accuracies 

of the wire cut profiles. Multiple optical sensors track the wire positions in X and 

Y directions, and corrective actions are taken in cases of deviations from the 

expected wire positions. A major improvement in cutting speeds were observed 

with the proposed strategy. Lin et al. (2001) developed a fuzzy logic model to 

improve the profile accuracy at corners during the wire EDM of SKD-11 steel. 

The authors aim to control the wire deflections and vibrations at the part corners 

to maintain the accuracy. It is reported that the profile errors at corners and small 

radii are caused by wire deflection, non-equilibrium state of discharges at corners 

and wire lag. The fuzzy model auto tunes the process parameters to ensure 

machining accuracy, while maintaining the machine productivity. Wang and 
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Ravani (2003) presented a computational method for cutting complex profiles. 

Tool path motion is generated considering the wire diameter and spark gap. A 

method is proposed which auto regulates the spark gap during the machining of 

tight geometries for easier flushing and wire break prevention. Yan and Huang 

(2004) developed a wire tension control system to reduce the wire vibrations 

during wire EDM of SKD11 tool steel. The system can achieve better geometrical 

accuracy than conventional tension control systems. Dynamic absorbers are 

installed to wire feed rollers and reels to control wire tension in real time.   

 

 

 

 

Fig. 2.8 Wire lag effect (wle) for a workpiece of height 60 mm                        

(Conde et al., 2018) 

Sarkar et al. (2011) proposed a wire lag compensation technique based on the 

developed mathematical model relating wire lag and gap force. The experiments 

were conducted on a die steel material. Wire deflection is observed to be inversely 

proportional to the radius of the profile. A methodology for accurate 

measurement of wire lag and gap force is described in the study. Habib and Okada 

(2016) studied the frequency and amplitude in parallel and perpendicular 

directions of wire vibrations during fine wire EDM process of SKD11. High 

speed video camera system with up to 24000 fps capture rate was used to observe 

the wire motion. Wire vibration amplitude was observed to be dependent on wire 

tension and is greater in parallel direction. The frequency analysis revealed 

stronger presence of 1st and 3rd order vibrations. Conde et al. (2018) studied the 

effect or wire lag and vibrations on part geometry during the wire EDM of D2 

steel. Corner cutting accuracy was reported to increase with wire lag. The 

machining process was halted in between the machining process and the wire lag 
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is traced using an optical instrument as shown in Fig. 2.8. Wire lag effect is 

influenced by workpiece height and flushing pressure. The types of discharge and 

unbalanced forces acting on the wire electrode combines to produce wire 

vibrations and lag, affecting the machined part geometry.  

2.7.4 Online height estimation and control  

Excessive discharge energy and debris accumulation leading to short circuits are 

commonly reported issues which can lead to wire breakages while machining 

work pieces of varying heights. In order to counter this, online height prediction 

and adaptive control was attempted by many researchers to avoid wire breakage.  

Rajurkar et al. (1994) developed a system which monitors and regulates the 

discharge frequency according to workpiece thickness. Workpiece height 

estimation model was developed by computing the relationship between spark 

frequency and cutting rate. The process control technique was based on the 

observation that, setting a constant spark frequency can cause excessive discharge 

energy or ineffective flushing at different height sections of workpiece, which 

can lead to wire breakage. Pulse off time was regulated to adjust spark frequency 

according to work height. Yan et al. (2001) developed an adaptive control system 

that adjusts the machining condition to prevent wire breakages while cutting the 

workpiece SKD11 tool steel of varying thickness. The authors observed that the 

stair shaped workpiece causes wire breakage due to inefficient removal of debris 

from the spark gap. A neural network model was employed to predict the 

workpiece height. Based on this, a three-layer fuzzy controlled algorithm 

stabilizes the machining condition. Firstly, the sparking frequency is monitored 

and controlled to prevent wire breakages. Secondly, the harmful spark ratio is 

monitored and controlled. Finally, parameter settings are tuned based on the 

estimated workpiece thickness. Altogether, the proposed control system ensured 

stable and faster cutting than the gap voltage-based control algorithm while 

machining the workpieces of varying heights.  

Liao et al. (2013) proposed a workpiece height computation methodology for 

wire break prevention by considering SKD11 as the workpiece. The workpiece 
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height was estimated based on feed rate and spark frequency. Further, a corrected 

variable servo voltage, as an alternate to the existing constant servo voltage is 

developed. The existing methodology calculates the servo voltage value based on 

initial work height. However, wire rupture was observed when machining 

variable height workpieces. The proposed system overcomes this limitation and 

ensures stability and performance while machining workpiece of variable height. 

Dou et al. (2013) has come up with an online height estimation algorithm using 

support vector regression (SVR). SVR predicts the workpiece height by receiving 

spark frequency, pulse off time, servo voltage, and servo feed as input. Based on 

the work height, a feedback control regulates the spark frequency to avoid wire 

breakages. The spark frequency is regulated by tuning pulse off time and servo 

voltage. Guangwei et al. (2018) developed a support vector machine (SVM) 

based online workpiece height computation system during wire EDM of tool 

steel. The SVM is trained by providing spark frequency, pulse duration, input 

feed, and actual feed as input. The pulse data is captured by using voltage and 

current sensors. Based on the predicted work height, input parameters are tuned 

to ensure stable machining.  

2.7.5 Wire break prevention and adaptive control systems 

Different wire break prevention methodologies proposed by researchers in the 

past are discussed in this section. Rajurkar and Wang (1991) proposed a 

monitoring method to prevent wire breakages during wire EDM of steel. It was 

found from the pulse train analysis that the spark frequencies shoot up just before 

the wire breakages. From this observation, the approach was to monitor the spark 

frequency continuously during the process and to adjust it when a threshold level 

is crossed. Pulse off time was adjusted to control the spark frequency. Liao et al. 

(1997) developed a process monitoring and control algorithm for wire EDM of 

SKD11. From the voltage and current signals, pulse classification was performed. 

A number of experiments were conducted on stable and unstable process 

conditions to analyse the typical symptoms before wire breakage. An increase in 

abnormal spark ratio and spark frequency were reported before wire breakage. 



 
 

42 
 

Based on these indicators, control parameter values are adjusted to restore the 

process stability.  

 

 

 

 

 

 

 

 

Fig. 2.9 Regions of machining stability (Kwon and Yan, 2006) 

Huang and Liao (2000) proposed an ANN expert system for failure detection. 

The ANN model can predict causes of wire rupture, low productivity, low surface 

finish or geometric accuracy. Fifteen features and 8 causes were identified for 

wire break situation. Training data of size 50 is used to develop the model which 

accepts the symptoms associated with failure as input and will suggest the reason 

for failure. Kwon and Yan (2006) proposed a different approach to monitor wire 

EDM process through instantaneous energy during wire EDM of SKD-11. The 

transient state of instability in the spark gap is monitored using a voltage and 

current sensor. A methodology to compute instantaneous energy from pulse data 

is described in the study. A pulse classifier distinguishes pulses into normal, 

stable arc, short and unstable arc by settings thresholds on voltage pulse signal. 

Monitoring instantaneous energy is said to improve machining stability, prevents 

machining failure by wire breakage and improve the process performance. Wire 

breakage was found to happen when the instantaneous energy crosses a threshold 

as seen in Fig. 2.9. Experiments were conducted to simulate the situation by 

increasing voltage and current.  
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Cabanes et al. (2008a) developed an online monitoring system that can send 

alarms in case of machining instability leading to wire rupture during wire EDM 

of tool steel. Three alarms, A1, A2 and A3, in the increasing order of criticality 

of instability were designed to go off according a rule set. The rules are based on 

discharge energy, spark frequency and ignition delay time. The most critical case 

will have higher discharge energy, higher spark frequency and low ignition delay 

time. The rules are formulated heuristically by conducting experiments under 

unstable machining conditions like complex profiles, ineffective flushing 

conditions, corner cutting etc. In a different study, Cabanes et al. (2008b) 

proposed another methodology to prevent wire breakages during wire EDM of 

tool steel. To study the behaviour of discharge characteristics during unstable 

conditions, such situations were purposefully created. The measured values of 

discharge parameters are compared with its reference values, obtained from their 

typical behaviour during stable cutting. The unstable conditions are characterised 

by rapid rise in discharge energy, decreased ignition delay along with increase in 

peak current, and alternating cycles of high and low-level discharge energy. 

During the above cases, the algorithm alarms the operator about the instability. 

Three levels of alarms were designed based on the severity of the instability 

namely low, medium and high-level alarm. Additionally, the algorithm displays 

the anticipated machining time left before the wire break happens.  

 

 

  

 

 

Fig. 2.10 Effect of pulse in time and current on wire break frequency  

(Kumar and Choudhury, 2011) 

Kumar and Choudhury (2011) developed regression models to predict frequency 

of wire breakage for brass wire electrode and zinc coated brass wire electrode 
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during wire EDM of high speed steel. The input parameters considered are pulse 

on time, duty cycle, input current, and wire feed rate. The relation between wire 

break frequency and input parameters are given in Fig. 2.10. Kumar et al. (2013) 

conducted parametric study by considering wire breakage frequency as response. 

Based on the one factor at a time study, a safe working range was suggested for 

each process parameter where the wire break frequency is minimum. The study, 

however, has not considered any interaction effects and the suggested settings 

were not validated to be free from wire breakages by confirmation tests. Mendes 

et al. (2014) proposed a measurement system for current and voltage signal to 

monitor and evaluate wire EDM stability during the machining of E25 grade 

carbide composite material. Discharge energy and discharge duration is 

computed by a sealed current monitoring hardware interfaced with LABVIEW 

software. The specially designed sealing system enables the current probe 

placement close to machining zone, while resisting water pressure up to 8 bar. To 

compare the process performance, a performance indicator was defined as the 

area cut per unit energy (in KJ) per unit time (in minute). The study concludes 

that, using this index and the proposed in situ measurement of discharge energy, 

a better process optimization can be achieved. Zhidong et al. (2014) proposed a 

novel feedback control system for wire EDM of semiconductors. The authors 

observed that the existing servo control systems are incapable of distinguishing 

between the normal open and short pulses in case of semiconductor machining. 

Ratio between normal and short discharge sparks, called current pulse 

probability, was considered as the servo feedback parameter to maintain gap 

stability. A reference value of current pulse probability decides the wire 

advancement towards the workpiece. If the probability lags behind the reference 

value, wire is advanced towards the workpiece and vice versa. In this way, always 

the ratio of normal sparks is maintained with respect to short sparks which 

prevents gap short circuiting.   

Klocke et al. (2014b) developed a process monitoring system to ensure part 

quality during wire EDM of firtree slot in Inconel 718. It was observed in the 

study that spark gap distance is one of the chief indicators of the process quality 
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during wire electric discharge machining. Too high spark gap affects process 

efficiency and productivity, and too less gap causes short circuits, affects surface 

integrity and can result in wire breakages. Since the inter electrode distance is 

difficult to monitor due to wire vibrations and deflections, mean gap voltage (Um) 

is considered to monitor the process, since it is proportional to spark gap. 

Experimentally, threshold values of Um were found by varying wire in feeds, so 

as to maintain the Ra to the industrial requirements (< 0.8 μm). The inspection 

confirmed that wherever Um had crossed the threshold, the Ra value was above 

0.8 μm. Kwon et al. (2015) developed a real time process control system to keep 

process instability in check during wire EDM of SKD11. Voltage and current 

data sensors were used to collect discharge signals. Undesirable pulse ratio and 

instantaneous energy were considered to evaluate process stability. The normal 

and undesirable pulses are distinguished by a classifier as shown in Fig. 2.11. The 

instantaneous energy and undesirable spark ratio are continuously monitored and 

regulated against reference values from wire EDM data book. The instantaneous 

frequency is reduced to avoid wire breakage and harmful spark ratio is reduced 

to avoid wire break and enhance process performance. By this approach, unstable 

spark ratio was brought down from > 80 % to < 6 %. Also, the surface roughness 

was reduced by 10 % and productivity was increased by 5 %. The proposed 

system is reported to improve the efficiency and performance better than spark 

frequency monitoring systems. 

Bergs et al. (2018) proposed a methodology to identify wire electric discharge 

machining instability by studying the discharge characteristics. Steel, TiAl6V4 

and SiC were considered as the workpiece materials. The authors observed that 

the unstable machining is characterised by an increase in proportion of abnormal 

sparks, discharge energy and sparking frequency. A rapid increase in sparking 

frequency was reported at 20 ms to 100 ms before wire break failure. Wang et al. 

(2018a) developed a tolerance monitoring system based on unsupervised learning 

while machining firtree slots on Inconel 718 material. The machined zones were 

classified into various zones based on captured signal features using hierarchal 

and K means clustering. Ignition delay time, extracted from the voltage waveform 
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is chosen as the indicator of profile tolerance. Each zone corresponds to different 

levels of tolerance deviations. Minimum tolerance zones (cluster 1 and 2) were 

reported to be the ones with higher proportion of short circuit sparks. The results 

suggested by the model was confirmed by form measurement using a coordinate 

measuring machine (CMM). The same research group (Wang et al., 2018b) 

proposed an online geometric form error detection technique by deep learning 

technique during fir tree slot machining of Inconel 718. Discharges were 

classified into four, based on the ignition delay time. The model is trained by 

acquiring discharge information for various tolerance zones which are custom 

designed by varying the spark gap. For real world testing, the fir tree profile was 

divided into 10 zones, and the profile accuracy predictions were accurate on 8 

occasions, resulting in a prediction accuracy of 80 %.  

 

 

 

 

 

 

 

 

Fig. 2.11 Pulse classification (Kwon et al., 2015) 

2.8 SUMMARY AND MOTIVATION 

Wire EDM process is having endless potential to replace conventional machining 

techniques to machine hard metallic components. However, the sustainability and 

efficiency of the process is limited by unexpected process failures. In the past, 
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several researchers have attempted to understand the wire wear mechanism and 

associated wire breakage failure. Even though the wire breakage is found to have 

strong relationships with phenomena of debris accumulation and spark gap 

bridging, an amicable solution to predict and overcome the failure situation is yet 

to be proposed. Several offline models are discussed which predicts wire 

breakage frequency based on input parameter combinations. Even though the 

offline models are simple, inexpensive and computationally efficient to perform 

quick predictions, a standalone offline model’s accuracy is often limited. At best 

such models can be used to set the initial parameter combinations, and then an 

online sensor-based system should take over for real time predictions.  

It is understood from the literature that pulse classification-based condition 

monitoring system is one of the most reliable way to predict process failures. This 

is based on the finding that the undesirable discharge pulses like short circuits are 

having a direct influence on the process stability and failures. If pulse 

classification is disregarded, the prediction model fails to consider the effects of 

abnormal sparks (open circuit, short circuit) and resulting failure prediction can 

be less accurate. However, most of the existing models fails to consider every 

discharge characteristic that lead to failure, and hence the predictions can be 

inaccurate. Also, many of the developed systems are capable of just alerting the 

operator about a potential failure, without intimating the degree of severity or 

they fail to propose a process control for process regulation. Another gap in the 

existing research work is regarding the type of failure considered. Almost the 

entire existing research work is addressing just one mode of wire EDM failure, 

i.e., wire breakages. However, there is a need to look at other modes of process 

interruptions which affects the process efficiency. Existing literature has not used 

the potential of machining learning techniques to the fullest in the area of sensor 

data-based failure prediction and process control. Neural network classifiers and 

regression models are capable of learning the patterns from acquired signals 

which leads to process failures.  
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2.9 RESEARCH OBJECTIVES 

The research aims to analyse the effect of machining stability on process failures, 

and to propose a condition monitoring and process control system for wire EDM 

process. The condition monitoring is performed initially through offline models 

and later by developing an online system. Following are the objectives of the 

present study: 

1 To study the effect of wire electric discharge machining stability on the 

performance characteristics.  

2 To develop a classification model to predict and analyse the failures of wire 

EDM process. 

3 To predict the occurrences of wire breakages by modelling mean gap voltage.  

4 To perform pulse train analysis and pulse classification to relate machining 

performance and discharge characteristics. 

5 To develop an intelligent algorithm for performance monitoring, failure 

prediction and process control through multiple sensor signals. 
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CHAPTER 3 

 

EXPERIMENTAL WORK 

 

3.1 INTRODUCTION  
 

This chapter details the experimental setup developed for the condition 

monitoring of wire EDM process. The experimental plan and procedure are 

discussed in detail. Details of the hardware used and methodology followed for 

the waveform measurement, signal processing and feature extraction are 

explained. Also, different test equipment used to measure the surface integrity of 

machined components are described.  

3.2 PILOT EXPERIMENTS 

Initial experiments are conducted on Inconel 718 material to understand the 

feasible ranges and limits of process parameters to be set for studying various 

responses. Since the research study involves analysing both the failure and 

normal machining conditions, pilot experiments are important to have an initial 

understanding on the process behaviours with respect to different parameters. 

Wire breakages are observed at high pulse on time (>118 μs), low pulse off time 

(<25 μs) and low servo voltage (<25 V) values. On the other hand, spark absences 

are observed at low pulse on time (<100 μs), high pulse off time (>55 μs) and 

high servo voltage (55 V) values.  

3.3 MATERIAL SELECTION 

Inconel 718 is chosen as the workpiece for this study due to its numerous 

applications in the aerospace, oil and gas and cryogenic industries. The material 

is known to retain its superior mechanical properties at high temperatures. The 

nickel-based superalloy exhibits excellent fatigue, creep performance at elevated 

temperatures. However, superalloys like Inconel 718 is considered as difficult to 

cut due to the low thermal conductivity, excessive heat generation in the 
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machining zone, work hardening, chemical affinity to tool material at high 

temperatures, and bult up edge formation. These combined effects result in 

excessive tool wear and surface damages (Parida and Maity, 2018). Wire EDM, 

being a non-contact material removal process, is associated with near zero cutting 

forces and residual stresses. Thus, the process is an ideal alternative to machine 

superalloys. Also, the industrial demands for machining extremely complicated 

profiles in Inconel 718 like fir tree slots, fir tree blade roots etc. favours wire 

EDM due to its flexibility and its ability to trace any complicated contours. The 

process is proved to be capable of meeting the strict geometric and dimensional 

tolerances of gas turbine industries (Klocke et al., 2012; Klocke et al., 2014; 

Anurag, 2018). The chemical and mechanical properties of the material are 

shown in Table 3.1 and Table 3.2.  

Table 3.1. Properties of Inconel 718 (Thakur, 2009) 

Property Value 
Density 8.19 g/cm3 
Melting Point  1260 – 1336 oC 
Specific Heat 435 J/kg K 
Average Coefficient of thermal expansion 13 μm/m K 
Thermal Conductivity 11.4 W/m K 
Ultimate Tensile strength 1240 MPa 

 

Table 3.2. Chemical composition of Inconel 718 (Reed, 2006) 

Element Ni Fe Cr Nb Mn C Co Al Si Ti Mo Others 

Weight 
(%) 

51.05 19.43 18.70 5.7 0.07 0.04 0.2 0.56 0.08 1.01 3.1 0.06 

  

3.4 EXPERIMENTAL SETUP 

A wire electric discharge machine (Model: Ecocut, Make: Electronica) is 

considered for conducting experiments in this study. The wire EDM machine is 

shown in Fig. 3.1. The machine is having X Y motion for translation, along with 

U V axis motion to provide taper. The resolution is 1 μm in each axis.  The 

dielectric fluid used is deionized water having a conductivity of ~20 μS/cm. 

Maximum workpiece height and weight supported are 200 mm and 300 kg. The 

machine supports wire electrode of 0.25 mm diameter which is held straight 
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between the upper and lower wire guides. Wire spools of 3.5 kg and 5 Kg can be 

loaded to this machine. The machine can be operated in two different power 

modes. Pulse power mode and fine power mode. Power pulse mode is generally 

used for rough cut operation and fine pulse mode is used for trim cut operation.  

 

 

 

 

 

 

 

 

Fig. 3.1 Wire electric discharge machine setup 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Elcam software interface 
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The profiles are CNC coded by using Elcam software. The software has all the 

basic draw and modify tools available in basic CAD softwares. Once the profile 

is drawn, the wire path start and end points are specified, followed by wire travel 

direction and wire compensation. Wire travel direction is simulated by the 

software to check for errors. Once the profile and wire travel are satisfactory, then 

the CNC codes to machine the profile is autogenerated by the software. The saved 

file can be transferred to the EDM machine using an USB drive. The software 

interface is given in Fig. 3.2. 

3.4.1 Condition monitoring setup 

A condition monitoring system is equipped to the wire electric discharge machine 

for failure prediction and process control. The system consists of high sampling 

rate differential probe, current probe, oscilloscope and a high-performance 

personal computer. The description of condition monitoring system components 

is given in Table 3.3.  

Table 3.3.  Components of condition monitoring system for wire EDM 

S.  
No 

Hardware Model Description 

1 Oscilloscope MDO 34-200  
200 MHz bandwidth  
2.5 GSa/s per channel  
10 M points record length 

2 
Differential 
Voltage Probe 

P 5200A 
50 MHz bandwidth 
0-1300 V measuring range 

3 
Current probe 
amplifier, Current 
probe 

TCPA 300 
TCP 303 

100 MHz bandwidth, 
0-150 A measuring range 

4 
Data acquisition 
system, 20 Channel 
Multiplexer module 

DAQ 6510 + 
7700 multiplexer  

 

Differential probe: A high voltage differential probe from Tektronix (model 

P5200A) is used for the voltage measurement between the electrodes. The voltage 

probes are equipped with switchable attenuation and bandwidth limits. The 
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measuring range of the differential probe is ± 1300 V with a bandwidth of                 

50 MHz. Specifications of the differential probe is given in Table 3.4. The 

differential probe is shown in Fig. 3.3. 

Table 3.4 High voltage differential probe specification 

S. No. Feature Specification 

1 Attenuation  50X/500X 

2 Bandwidth   DC to 50MHz 

3 Connector   BNC 

4 Differential voltage  500X: ±1300 V, 50X: ±130 V 

5 Common mode voltage  ±1300 V 

6 Differential input impedance  10M/2.0pF 

7 
Input Impedance between each 
Input and Ground   

5 MΩ, 4 pF 

8 CMRR 

DC: >80 dB 
100 kHz: >60 dB 
3.2 MHz: >30 dB 
50 MHz: >26 dB 

10 Maximum input voltage to earth 1000V CAT II 

 

 

 

 

 

Fig. 3.3 Differential probe 

Current probe: AC/DC current measurement system from Tektronix is used to 

measure the discharge current during wire EDM pulse cycle. The system includes 

a TCP303 current probe with TCPA300 current probe amplifier as shown in          

Fig. 3.4. The bandwidth of the current probe when coupled with amplifier is 15 

MHz. Measuring range is from 5 mA to 150 A RMS when using the high current 
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range of 50 A/V. The detailed specifications of the current probe, current probe 

amplifier system is given in Table 3.5. 

Table 3.5 Specifications of the current measurement system  

S.  
No. 

Feature Specification 

1 Bandwidth DC to 15 MHz 

2 Rise time ≤23 ns 

3 Typical Accuracy DC: ±1% of reading 

4 Insulation 300 V CAT III 

5 Signal delay 40 nS  

6 High current Range  50 A/V 

7 
Max DC, RMS and Peak (high current 
range) 

150A, 150A, 500A 

8 Low current Range 5 A/V 

9 
Max DC, RMS and Peak (low current 
range) 

25A, 17.7A, 500A 

10 Max conductor Size 21 mm x 25 mm 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Current probe and current probe amplifier 



 
 

55 
 

Oscilloscope: A Tektronix mixed domain oscilloscope (MDO) is used to record 

and analyse the voltage and current signals during the machining operation. The 

model image is given in Fig. 3.5. The model MDO 34-200 has 4 analog channels, 

each with a sampling rate of 2.5 G Samples/s. The record length is 10 million and 

bandwidth is 200 MHz which is upgradable if required. The oscilloscope is 

interfaced with MATLAB using TekVISA drivers. Further specifications of the 

oscilloscope are shown in Table 3.6.  

 

 

 

 

 

 

 

Fig. 3.5 Mixed domain oscilloscope 

The overall schematic and connections of the proposed condition monitoring 

system is given in Fig. 3.6. The two ends of differential probe are connected 

across the electrodes. Positive wire is connected to workpiece and negative to 

wire electrode. The current monitor is a ring type probe which is clipped around 

the wire electrode side (negative polarity). The current and voltage probes are 

connected to two separate channels of the oscilloscope. Fig. 3.7 shows the image 

of the condition monitoring system installed on the wire EDM. 
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Table 3.6. Specifications of the MDO 34 oscilloscope 

S. No. Feature Specification 

1 Bandwidth 200MHz  

2 
No of Analog 
channels 

4 

3 Record length 10 M 

4 Sampling rate 2.5 Gsa/S on all channels 

5 Typical rise time 2ns 

6 Time base 1 ns/div to 1000 s/div 
7 Time base Accuracy ±10 ppm  

8 Vertical  1 mV/div to 10 V/div @ 1 MΩ 

9 
Waveform capture 
rate 

>230,000 wfms/s in FastAcq 
acquisition mode 

10 Display  
11.6 in. (295 mm) TFT LCD with 
capacitive touch 
1920 horizontal × 1080 vertical HD 

11 Probe interface TekVPI probe interface 

12 
Bandwidth 
upgradability 

Available 

13 Connectivity 
Front and rear USB host ports, HDMI 
port (rear), Aux in AUX out, 10/100 
Ethernet (rear)  

 
 

 

 

 

 

 

 

 

Fig. 3.6 Schematic of the condition monitoring setup 

PC
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Fig. 3.7 Condition monitoring system installed on wire electric discharge 

machine 

 

3.5 EXPERIMENTAL METHODOLOGY 

Initially pilot experiments are conducted to approximate the parameter limits and 

ranges for safe operation and process failures. The initial experiments are aimed 

to study the effect of debris accumulation on machining failure and part quality. 

After which, offline models are developed for failure classification and 

prediction. Based on the understanding of the failure mechanism from the offline 

models, the online condition monitoring is performed using multi sensorial data 

from current and voltage sensors. The experimental procedure is described as 

follows.  

• The effect of process parameters on the machining failures is understood by 

conducting pilot experiments. Based on this, unideal machining situations 

during wire EDM of Inconel 718 is created intentionally, which will result in 

machining failures like wire breakage and spark absence. The approach is to 

increase the degree of debris accumulation in the spark gap by changing pulse 

on time, pulse off time and servo voltage at discrete levels.  

Current
Monitor

Wire EDM

Mixed Domain 
Oscilloscope

Current
Amplifier

Voltage Probe

‘+’ connection

‘’ connection

Current
Monitor

Voltage output  Current output 
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• The effect of debris accumulation in the spark gap on the machined surface 

integrity is analyzed by considering the surface roughness, 3D surface 

morphology, microstructural analysis by SEM images, and EDS analysis. 

Additionally, wire wear and elemental migration is also studied.  

• A multi-class classification model based on artificial neural network (ANN) 

is modelled to predict the machining outcomes. Eighty-one experiments are 

conducted based on full factorial experimental design to train the model. The 

class labels for this multi class classification model are normal machining, 

wire breakage, and spark absence.  

• An in-process data parameter (mean gap voltage variation, ΔVm) is 

introduced as an indicator of machining stability during the wire EDM 

process. ΔVm value computes the difference between the set voltage and 

actual gap voltage during machining. The gap voltage fluctuations are due to 

the debris accumulation in the inter electrode gap. Such a situation, where 

debris tends to accumulate without getting completely flushed away, indicates 

an unstable machining condition. ΔVm value is greater at higher instabilities, 

and can potentially lead to wire breakage after a limit. An ANFIS model is 

developed to predict ΔVm value, based on which a decision support model 

can alert the operator about a potential wire breakage. Thirty-one experiments 

are conducted based on central composite design (CCD) of response surface 

methodology (RSM) to train the ANFIS model. The effect of ΔVm on the 

machine part quality is evaluated by considering surface, morphological and 

topographical study. The effect of ΔVm on wire wear is also studied. 

• A condition monitoring system is set up by installing high sampling rate 

voltage and current sensors to the wire EDM. A mixed domain oscilloscope 

and a high-performance PC is used to record, process and analyse the sensor 

data to make failure predictions. 

• Different discharge characteristics like pulse frequency, ignition delay time, 

and discharge energy are extracted from voltage and current signals. One 

factor at a time experiments are conducted to study the effect of process 

parameters on the discharge characteristics. 
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• A pulse classification algorithm is developed to distinguish between normal, 

arc, short and open discharges. The effect of pulse proportions on process 

responses and machining failures is studied.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.8 Flowchart of the experimental plan 
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proportions
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• A failure detection algorithm is developed to predict the process failures like 

spark absence and wire breakage based on extracted discharge characteristics 

and pulse proportions from the sensor data.  

• Finally, an intelligent process control algorithm identifies the severity of 

process failure and suggest alternate input parameter settings to restore the 

machining stability back to normal. The control system ensures continuous 

machining without process failures.  

The experimental plan is represented as a flowchart in Fig. 3.8. 

3.6 SOFT COMPUTING MODELS 

3.6.1 ANN classification 

Classification is a machine learning problem where a class label is predicted for 

a given sample data. If the model classifies data into two classes, then the model 

is a binary classifier. On the other hand, a multiclass classifier categorises the 

data into more than two classes. The technique involves fitting a decision 

boundary to separate the datapoints to separate classes. The datapoints lie in a 

multi-dimensional space, whose order depends on the number of inputs. For 

example, if the input dataset contains 4 elements, then the decision boundary is a 

4 – dimensional hyper surface. As the dimension and non-linearity increases, the 

complexity to fit such a hyper surface also increases. Neural network classifiers 

are reported to perform well in such non-linear and multidimensional cases. 

Artificial neural network (ANN) is a bio inspired machine learning technique 

which emulates the learning system of the human neurons. It is a supervised 

learning technique which predicts the class label of input dataset. The class label 

can be an event or a category to which the input dataset belongs to. To train the 

model, a sufficiently large training data has to be fed initially. The training dataset 

consists of the input data, which in the case of wire EDM modeling is a 

combinations of input parameters, and its corresponding class labels, which are 

machining outcomes. If 81 training experiments are conducted by varying 4 input 

parameters, then input dataset to train the model is a matrix of size [81 x 4]. Its 
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corresponding class labels are recorded as probability of the input dataset to fall 

in each category. If there are 3 class labels, then the output dataset for the training 

is a matrix of size [81 x 3]. Such a classification technique where a given data is 

classified into several classes is called multi-class classification problem. 

The feed forward back propagation neural network (FFBPNN) is a common ANN 

architecture which is used in this study. Here, weights and biases of neurons in 

each layer is carried forward as neuron outputs. These weights and biases are 

tuned or adjusted to minimize the error between the actual class and predicted 

class. This model is extremely capable of understanding the patterns and is very 

versatile. The optimal ANN architecture is application dependent. Therefore, 

setting the number of hidden layers is challenging and heuristic methods are often 

adopted to reach the optimal ANN structure. A generic ANN structure is shown 

in Fig. 3.9. The output layer of the classification neural network gives the class 

probability of each input dataset. Using the SoftMax function, ith output neuron 

gives the probability as shown in Eq. (3.1) 

𝑝𝑖 =
𝑒𝑞𝑖

∑ 𝑒
𝑞𝑗𝑘

𝑗=1

      (3.1) 

where qi is the input vector to the output neuron i, k is the total number of classes 

in the classifier. The ANN parameters used in the classifier model is given in 

Table 3.7. 

 

 

 

 

 

Fig. 3.9 ANN structure 
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Table 3.7 Parameters of ANN based multiclass classifier 

Parameter Properties 

Number of inputs  4 

Input layer neurons 
Pulse on time, pulse off time, servo 

voltage, wire feed rate 

Number of classes  3  

Output layer neurons 
Probability of spark absence, wire 
breakage and normal machining 

Number of neurons in each hidden layer 10 

Training algorithm 
Scaled conjugate gradient 
backpropagation (trainscg) 

 

3.6.2 ANFIS modeling 

Adaptive neuro fuzzy inference system (ANFIS) combines the benefits of both 

fuzzy logic and artificial neural network algorithms. It is a supervised machine 

learning technique which uses an inference engine based on IF-THEN rule set. 

However, unlike fuzzy logic models, ANFIS is not entirely expert knowledge 

dependent and can be trained using training dataset. The membership function 

parameters can be tuned using gradient descent during back propagation. Also, 

the model uses least squares to tune output node function consequent parameters. 

ANFIS is regarded as computationally efficient and capable to handle non-

linearities, which makes it a suitable option to model wire EDM responses. 

ANFIS structure has 5 layers and each layer contains several nodes as shown in 

Fig. 3.10. The nodes are distinguished by their node functions which are 

explained as follows: 

Layer 1: This layer receives the input parameter values and identifies the 

corresponding membership function. This process is called fuzzification. This is 

a variable node, whose node function is given by  

𝑂1,𝑖 = µ𝐴𝑖
(𝑥) 𝑓𝑜𝑟 𝑖 = 1,2      (3.2) 
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𝑂1,𝑖 = µ𝐵𝑖−2
(𝑦) 𝑓𝑜𝑟 𝑖 = 3,4      (3.3) 

 

 

 

 

 

Fig. 3.10 ANFIS structure 

here x and y denote the two input parameters, and their linguistic variables are 

given by A and B respectively. The shapes of the membership function can be 

gaussian, triangular, trapezoidal etc. µ(x) and µ(y) represents the membership 

functions. A triangular membership function is defined by the equation 

µ(𝑥) =

{
 
 

 
 

0, 𝑥 ≤ 𝑎
𝑥−𝑎𝑖

𝑏𝑖−𝑎𝑖
,𝑎 ≤ 𝑥 ≤ 𝑏

𝑐𝑖−𝑥

𝑐𝑖−𝑏𝑖
, 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥

     (3.4) 

On the other hand, if the membership function is gaussian, then the equation 

changes to 

µ(𝑥) = exp (
−(𝐶𝑖−𝑥)2

𝑎𝑖
2 )     (3.5) 

here, the trainable function parameters are given by 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖, which 

determines the shape of the membership function.  

Layer 2: Layer 2 is the ‘rule layer’ which consists of fixed nodes which are 

indicated by Π. Here each node computes the product of the input membership 

function values. The output function is thus given by the equation   

𝑂2,𝑖 = 𝜔𝑖 = µ𝐴𝑖
(𝑥) . µ𝐵𝑖

(𝑦)      𝑓𝑜𝑟 𝑖 = 1,2   (3.6) 
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where  𝜔𝑖 is the node output which represents the firing strength of a rule. 

Layer 3:  Layer three comprises of fixed nodes represented by N. The node 

normalizes the rule firing strength computed by the rule layer. The node function 

is given by  

𝑂3,𝑖 = (𝜔𝑖)̅̅ ̅̅ ̅̅ =
𝜔𝑖

∑𝜔𝑖
=

𝜔𝑖

𝜔1+𝜔2
       𝑓𝑜𝑟 𝑖 = 1,2   (3.7) 

Layer 4:  This layer contains adaptive nodes. The nodes receive the normalized 

rule firing strength as input and multiplies it with fuzzy if then rules. The node 

function is thus given by   

𝑂4,𝑖 =  (𝜔𝑖)̅̅ ̅̅ ̅̅  .𝑓𝑖           𝑓𝑜𝑟 𝑖 = 1,2     (3.8) 

here the fuzzy if then rules are given by 𝑓1  and 𝑓2 and the consequent parameters 

are represented by pi , qi and ri 

 Rule 1: 𝑖𝑓 𝑥 𝑖𝑠 𝐴 1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 1 𝑡ℎ𝑒𝑛  𝑓 1 = 𝑝 1 𝑥 +  𝑞 1 𝑦 + 𝑟 1  

 Rule 2: 𝑖𝑓 𝑥 𝑖𝑠 𝐴 2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵 2 𝑡ℎ𝑒𝑛  𝑓 2 = 𝑝 2 𝑥 +  𝑞 2 𝑦 + 𝑟 2  

This layer is called defuzzification layer 

Layer 5:  This final layer contains fixed nodes, which gives the final output by 

the following equation 

𝑂5,𝑖 =  𝑓   = ∑ (𝑤𝑖)̅̅ ̅̅ ̅̅  .𝑓𝑖𝑖          𝑓𝑜𝑟 𝑖 = 1,2    (3.9) 

3.7 LOW PASS FILTER  

The raw signals captured by the condition monitoring system are processed and 

relevant features are extracted to draw conclusions regarding the health status of 

the process. Filtering is a process performed to partially or completely eliminate 

the undesirable components of a signal. A low pass filter supresses the high 

frequency noises in the raw signal allowing the lower frequencies to pass through. 

SignalAnalyzer toolbox in MATLAB is used to filter the raw signals. Fig. 3.11 

shows a sample waveform to demonstrate the effect of lowpass filter tool.  
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Fig. 3.11 (a) Unfiltered signal (b) Filtered signal 

 

3.8 MEASUREMENT OF PERFORMANCE CHARACTERISTICS  

3.8.1 Cutting speed 

Cutting speed is calculated as the ratio of the length machined and time taken for 

machining.  

𝐶𝑢𝑡𝑡𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑,𝐶𝑆 (𝑚𝑚 𝑚𝑖𝑛⁄ ) =  
𝑇  𝑎𝑙 𝑝𝑟 𝑓𝑖𝑙𝑒 𝑙𝑒𝑛𝑔 ℎ (𝑚𝑚)

𝑇  𝑎𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑖𝑛𝑔  𝑖𝑚𝑒 (𝑚𝑖𝑛)
   

 (3.10) 

 

 

 

 

 

 

Fig. 3.12 Integrated computer displaying the cutting speed value during 

machining 
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Once the machining starts, cutting speed is displayed in the integrated screen of 

wire EDM as shown in Fig. 3.12. The path length, computed from the CNC codes 

is also displayed in the integrated screen. To verify the displayed value, cutting 

speed is calculated manually by recording the machining time manually.  

3.8.2 Surface roughness 

Zeiss Surfcom Flex 35-B contact type compact surface profilometer with a 

diamond stylus tip and sapphire skid is used for surface roughness measurement 

(Fig. 3.13). Measuring range in z axis is ±160 μm with a resolution of 0.01 μm at 

± 20 μm. The evaluation length was considered is 4 mm and the cut-off length 

(Lc) is 0.8 mm. The probing force is 4 mN during the roughness measurement. 

Total traverse length is 12.5 mm with a measuring and retraction speed of                   

0.6 mm/s and 1 mm/s respectively.  

 

 

 

 

 

 

Fig. 3.13 Surface profilometer 

3.8.3 Microstructural analysis 

A field emission scanning electron microscope (FESEM) of Zeiss make with 

model number GeminiSEM 300 is used to obtain surface microstructure of 

machined samples and worn wire samples. The SEM is having a maximum 

magnification of 2,000,000X with a resolution of 0.8 nm at 15 kV. To analyse 

elemental compositions, the SEM is equipped with an Energy Dispersive X-Ray 
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Spectroscopy (EDS) attachment. The model has different detectors like back 

scattered electron detector (BSE), secondary electron detector (SE), and in-lens 

detector which are selected based on imaging requirement. The FESEM is shown 

in Fig. 3.14. Machined surfaces are imaged with a magnification of 1500 x for 

microstructural analysis and comparison. On the other hand, worn wire samples 

are imaged with 300 x and 500 x magnification based on the feature analysed. In 

both the cases, SE2 detector is selected.  

 

 

 

 

 

 

Fig. 3.14 Field emission scanning electron microscope (FESEM) setup 

3.8.4 Profile accuracy 

An accurate tutor spectra model, bridge type coordinate measuring machine 

(CMM) is used to evaluate geometric accuracies of machined parts in this study. 

The machine has a resolution of 0.1 μm and a measuring range of 500 mm              

(x axis) x 600 mm (y axis) x 400 mm (z axis). The CMM uses a ruby probe of             

5 mm diameter. An air bearing guidance is provided for accurate and smooth 

travel on all axes. The software Arco CAD is used to measure and analyse the 

profile through an integrated computer system. Dimensional and form deviations 

are measured, stored and analysed using this software graphics user interface.  

The CMM and the measuring probe is shown in Fig. 3.15. 
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Fig. 3.15 Coordinate measuring machine 

3.8.5 Surface morphology 

A non-contact 3D profilometer, as shown in Fig. 3.16, is used to analyse the 

surface morphology of machined surfaces. AEP Nanomap 1000WPI model white 

light interferometer is used to create high resolution 2D and 3D surface images. 

The XY scanning range can be up to 150 mm x 150 mm and z axis resolution is 

0.001 nm. The profilometer is equipped with antivibration table to eliminate the 

noises. Both 2D and 3D surface roughness parameters like Ra, Rz, Rq, and Sa, Sz, 

Sq can be measured using this instrument.  

 

 

 

 

 

 

Fig. 3.16 Non-contact 3D profilometer 



 
 

69 
 

3.9 SUMMARY 

The chapter summarises the details of the developed condition monitoring 

experimental setup. The details regarding the wire electric discharge machine, 

consumables, workpiece and parametric settings are discussed. The overall 

methodology of the current research work is described emphasising on sensors 

and acquisition system. Different soft computing tools for classification and 

regression have been briefed. Also, signal processing operation like filtering, to 

suppress noisy data from the raw signals are described. Various responses 

measured, along with the details of the test equipment like FESEM, contact 

profilometer, non-contact profilometer, coordinate measuring machine etc. is 

detailed. The test accuracy and repeatability of measuring equipment was ensured 

in each case.   
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CHAPTER 4 

 

MACHINING STABILITY ANALYSIS  

 

4.1 INTRODUCTION 

This chapter details about the process stability of wire EDM process. Unstable 

machining conditions affects the productivity, part quality and process 

sustainability. The stability is strongly dependent on the debris generation, debris 

accumulation in the spark gap, and its effective removal during the pulse off time. 

Mechanism of wire wear leading to rupture as a result of debris stagnation in the 

spark gap is analysed. Experimental methodology incorporated to create unstable 

machining situation is also discussed. The main objective of this chapter is to 

understand the relevance of maintaining machining stability from a surface 

integrity point of view. In this regard the effect of unstable machining conditions 

on surface integrity and process failure are analysed.  

Wire EDM machining process is said to be stable when the debris generated is 

flushed away entirely during the pulse off cycle. Also, the dielectric property of 

the spark gap is to be restored entirely during this period. A stable wire EDM 

pulse cycle result in breaking and restoration of dielectric barrier in the spark gap 

during the pulse on and off cycles respectively. This is an idealized situation to 

explain the material removal mechanism. Practically, the debris removal is 

always partial, leading to time variant dielectric properties in the spark gap. 

Easiness of flushing the debris from the spark gap is mainly dependent on pulse 

off time and the inter electrode distance. The inter electrode distance is set by a 

feedback voltage parameter called the servo voltage. Also, the relative amount of 

debris generated is directly proportional to the pulse on time.   
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4.2 EXPERIMENTAL DETAILS 

To study the machining stability, several methods have been used by the 

researchers in the past to intentionally create unstable machining conditions. In 

this study, the unstable conditions are custom designed by varying the severity of

debris stagnation in the spark gap. This is done by varying pulse on time, pulse 

off time and servo voltage together in discrete steps. Higher discharge energy 

implies more material removal rate and hence more debris are produced. 

Narrower spark gap makes it harder for the dielectric to flush away the debris. 

Servo voltage is the parameter which governs the spark gap. Also, lesser the pulse 

off time, higher are the chances of incomplete debris removal. The parameter 

combination chosen to generate different amounts of debris in the spark gap is 

shown in Table 4.1. A representation of possible debris accumulation at different 

machining conditions are shown in Fig. 4.1. The profile machined is shown in 

Fig. 4.2. This profile is chosen to evaluate form errors like flatness error, 

circularity and cylindricity. The parameters and ranges are selected based on pilot 

experiments, wire EDM manual, and literature survey.  

Table 4.1. Process parameter combinations based on machining stability 

Machining 
condition 

label 

Ton  

(µs) 

Toff 

(µs) 

Servo 
Voltage 

(V) 

Discharge 
energy 

Pulse off 
time 

Spark gap 
distance 

C1 101 52 65 Lowest Highest Highest 

C2 104 50 60 Low High High 

C3 107 48 55 
Relatively 

low 
Relatively 

high 
Relatively 

high 

C4 110 46 50 Medium Medium Medium 

C5 113 44 45 
Relatively 

high 
Relatively 

low 
Relatively 

low 

C6 116 42 40 High Low Low 

C7 119 40 35 Highest Lowest Lowest 
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Fig. 4.1 Representation of debris accumulation in spark gap at machining 

condition (a) C1 (b) C2 (c) C4 (d) C6 (e) C7 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Shape of the profile machined 

Inconel 718 material of thickness 10 mm is chosen for this study. Zinc coated 

brass electrode of 0.25 mm diameter is chosen for the surface integrity and 

process failure analysis. Coated wire is chosen because of the higher overall 

performance and better resistance to wire breakage which is evident from a wire 

electrode comparison described in this chapter. The responses measured are 

average surface roughness, cutting speed, flatness error, circularity, and 
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cylindricity. Additionally, microstructural analysis of machined surface and worn 

wire surface, subsurface EDS analysis of machined and wire surface, surface 

morphology study by 3D profilometer images, and micro hardness study are 

conducted to compare the surface integrity at different machining conditions.  

4.3 GEOMETRIC ERRORS 

Geometric inaccuracy during the wire EDM operation is related to the bending, 

fluctuation or vibration of wire electrode during the spark machining. Ideally wire 

electrode is expected to be in vertically straight position throughout the 

machining process. However, this is an idealized situation where the only force 

acting on the wire electrode is the axial wire tension. In reality, numerous lateral 

forces are acted upon on the wire electrode which deflects or vibrates the wire 

electrode. The forces are expected to be more for unstable machining conditions 

compared to stable machining conditions. The geometrical profile is traced by the 

top and bottom wire guides, disregarding the actual wire electrode position in the 

machining zone. Therefore, any deviation of wire electrode from the imaginary 

straight line connecting the top and bottom wire guide wire guides would result 

in inaccurate machining. Wire lag (deflection) and wire vibration are regarded as 

the two main reasons for geometrical inaccuracies.  

 

 

 

 

 

 

 

 

 

Fig. 4.3 Wire lag effect influencing geometric accuracy (Sanchez et al., 2007) 
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4.3.1 Inaccuracy due to wire deflection 

Wire lag is the prominent effect of wire deflection. Wire lag is static deflection 

parallel to machined path, defined as the maximum magnitude of the difference 

between programmed wire position and actual wire position. The reason for wire 

lag effect is unbalanced forces acting on the wire electrode during the spark 

erosion. Wire lag effect is considered as the chief cause of form error especially 

when the profile involves change in wire direction, as in corner cutting (Lin et 

al.,2001; Sanchez et al., 2007). The wire lag effect is depicted in Fig. 4.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Wire vibrations influencing geometric accuracy 

4.3.2 Inaccuracy due to wire vibrations 

The various unbalanced forces acting on the wire electrode are electrostatic 

forces, electromagnetic forces, dielectric fluid flushing pressure, force due to 

discharge sparks, and the pressure exerted by the vapour bubbles formed during 

the spark erosion. These forces result in wire electrode vibrations parallel to 

machining direction and perpendicular to it. Fig. 4.4 shows how the wire 

vibrations effect the geometric accuracy of machined profile. A stable machining 

is expected to result in fewer wire vibrations, and vice versa. During an unstable 

Ideal wire position in completely stable machining (minimal inaccuracy)

Wire position under marginal instability (minor inaccuracy)

Wire position under sever instability (High inaccuracy)
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machining, wire electrode experiences higher lateral forces due to the combined 

effect of higher intensity sparks along with higher pressure exerted by vapour 

bubbles. 

4.4 MACHINING OUTCOMES 

The machining outcome under each of the seven conditions are recorded as 

shown in Table 4.2. The machining outcome is regarded as process interruption 

if the machining is halted before the completion of profile. Two such cases are 

observed, namely spark absence and wire breakage corresponding to condition 

C1 and C7 respectively. Other conditions from C2 to C6 are observed to machine 

the profiles without any process failures. However, their surface integrity varies 

considerably due to differences in spark gap condition, and is discussed in detail 

in the upcoming section.  

Table 4.2 Machining outcomes under different machining conditions 

considered 

Machining 
condition label 

Machining outcome Type of failure 

C1 Process interruption Spark absence 

C2, C3, C4, C5, C6 Uninterrupted machining No failure 

C7 Process interruption Wire breakage 

 

4.4.1 Spark absence 

Spark absence phenomena causes similar negative effects as wire breakage and 

thus it shall be avoided to ensure process efficiency. Spark absence is an 

inefficient machining situation where the voltage applied across the electrodes is 

not sufficient enough to break the dielectric barrier. In such cases, the discharge 

spark frequency is negligible or zero causing a process interruption. The main 

reasons for spark absence are higher than ideal spark gap distance. Also, this can 
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happen if the pulse on time is not sufficiently high to complete the ionization of 

discharge channel. This condition is shown in Fig. 4.1 (a).  

4.4.2 Wire breakage  

The debris stagnation in the spark gap results in spark gap bridging and formation 

of secondary sparks called short circuit sparks. These high intensity sparks occur 

without any ignition delay time. Ignition delay time is absent since the inter 

electrode gap is already conductive due to excess debris and the sparks occur 

immediately when the voltage supply is on, as depicted in Fig. 4.1 (e). The 

discharge frequency will also be higher than normal in this case. The overall 

effect is rapid wire wear which can eventually lead to wire breakage. Stages of 

wire wear at different machining conditions are shown in Fig. 4.5. Images of 

multiple wire surfaces under each condition are examined to ensure that similar 

wear patterns are observed at every instance. Also multiple locations of same wire 

sample is imaged to confirm a similar wire wear. Zinc coated brass wire is chosen 

to study the wire wear due to its better endurance to higher energy sparks and 

wire breakage. Fig. 4.5 (a) corresponds to case C2, where the wire wear is 

minimal due to low discharge energy, sufficient spark gap and pulse off time. On 

the contrary, at condition C6, pulse on time is the higher, spark gap is narrower 

and pulse off time is shorter. This leads to severe wire surface degradation due to 

higher intensity short circuit sparks, as shown in Fig. 4.5 (b). The wire coating is 

seen to be removed, exposing the unprotected inner brass wire core. At this stage 

the wire electrode is prone to easier breakage. If the spark gap stability worsens 

than this level (with still higher pulse on time, narrower spark gap, and shorter 

pulse off time), the wire degradation will reach a stage where the wire strength is 

not sufficient enough to withstand the axial tension. Thus, the wire elongates, at 

the point of maximum wire damage, till its eventual breakage resulting in a 

conical tip as shown in Fig. 4.5 (c).  
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4.4.3 Continuous machining 

In this study, profile completion without process interruption is regarded as 

continuous machining. Thus, except the extreme two cases (C1 and C7), every 

other condition resulted in continuous and uninterrupted machining. The surface 

integrity of these cases is compared in detail in the upcoming section.  

 

 

 

 

 

 

 

 

Fig. 4.5 SEM images showing stages of wire wear (a) minimal wire wear (b) 

severe wire wear (c) broken wire tip 

4.5 SURFACE INTEGRITY AT DIFFERENT MACHINING 

STABILITIES 

Apart from process failures, unstable machining conditions can cause 

considerable surface integrity damages. Therefore, there is a need to investigate 

the effect of machining stability on surface integrity during the continuous 

machining conditions too. Even though machining conditions C2 to C6 resulted 

in failure free cutting, surface integrity analysis is performed and the differences 

are reported in this section. Surface integrity variations can occur due to the debris 

accumulation and corresponding machining stability variations. The aim is to 

study the importance of regulating the machining stability from the surface 

Severely 
degraded 
wire surface

Melt pool

Minor surface wear

Debris

Broken 
wire tip

Partially 
removed 
coating

Condition 
C2

Condition 
C6

Condition 
C7



 
 

78 
 

integrity point of view. Henceforth, in this section, the continuous machining 

cases, C2 to C6 are considered for surface integrity analysis.  

4.5.1 Surface morphology and surface roughness  

Surface morphology comparison of surfaces machined at condition C2 and C6 is 

given in Fig. 4.6. It is seen that condition C2 resulted in a smooth surface with 

shallow valleys and low peaks. But surface machined under C6 is observed to be 

much coarser. This is due to the surface damages and deeper craters caused by 

higher intensity short circuit sparks due to debris stagnation at C6 condition. 

Apart from the craters, the micro features of recast surface layer produced by re 

solidification of molten material also contributes to the coarseness. Lesser the 

recast layer features, smoother will be the surface. Due to the same reason average 

surface roughness value is seen to increase from C2 to C6 as shown in Fig. 4.7. 

Since the material removal happens from both the electrodes during the spark 

discharges, apart from surface roughness, wire wear is also higher at unstable 

machining condition (C6) due to higher intensity short circuit sparks, compared 

to stable machining condition (C2). The relationship between surface roughness 

and wire wear is reported by Tosun and Cogun (2003). 

 

 

 

 

Fig. 4.6 Non-contact surface profilometer images at machining condition  

(a) C2 (b) C6 
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4.5.2 Microstructural analysis 

The microstructural study is performed by considering the SEM images of 

machined surfaces at different machining conditions. It can be observed that 

machined surface is extremely coarse at C6 which improves subsequently at 

better stability levels as shown in Fig. 4.8. SEM images additionally revealed the 

presence of micro features in the machined surface. These micro features are 

formed when a part of the molten material is resolidified back to the machined 

surface. Micro voids are caused when vapour bubbles entrapped in the recast 

layer are burst leaving void spaces. Micro cracks are formed by thermal impact 

due to quick quenching. Other micro features present are globules, pits and pores. 

These features are detrimental to the load bearing capacity of the machine surface, 

especially at higher temperatures. These surface irregularities are thus 

undesirable and shall be minimized.   

 

 

 

 

 

 

 

 

 

 

Fig. 4.7 Surface roughness at different machining conditions 
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Fig. 4.8 Microstructural comparison at different machining conditions  

(a) C2 (b) C4 (c) C6  

4.5.3 Geometric accuracy 

The geometric accuracy is compared at different machining conditions 

considering flatness error, circularity, and cylindricity. Flatness error is the 

minimum distance between two imaginary parallel and perfect planes which can 

contain the surface under consideration. Circularity is the minimum radial 

distance between two perfect imaginary concentric circles within which the 

considered profile can be inscribed. Similarly, cylindricity is the minimum radial 

distance between two perfect imaginary concentric cylinders within which the 

considered profile can be fit.  

As discussed earlier, geometric accuracy of a wire EDM machined profile is 

dependent on wire vibrations and deflection due to lateral forces experienced by 

the wire electrode. Wire electrode tends to vibrate more when there is higher 

amount of debris stagnation in the spark gap. This is due to multiple reasons like 

the interaction of debris with the wire, higher force associated with short circuit 
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discharges, and the higher impact of escaping vapour bubbles in the congested 

spark gap. This effect is shown in Fig. 4.9 where geometric errors are increased 

progressively from condition C2 to C6. This effect is same for all the three form 

errors considered: flatness error, circularity and cylindricity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9 (a) Flatness error, (b) Circularity error, and (c) Cylindricity error at 

different machining conditions 

4.5.4 Micro-hardness 

Microhardness tests are conducted to analyse the subsurface softening of 

machined surface under different machining conditions. Micro hardness tests are 

conducted on the polished cross-sectional surface at different depths away from 

the wire EDM processed surface. The microhardness of the material before 
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machining is found to be 196 HV. The test is conducted at 4 points till 80 μm 

deep from the machined surface, which is the reported depth of heat affected zone 

during wire EDM of Inconel 718. Since the mechanism of material removal is by 

melting and vaporisation, the thermal impact can soften the subsurface compared 

to the parent matrix. It can be seen from Fig. 4. 10 that the machining condition 

C6 has caused maximum softening, and the effect nullifies in the subsequent 

conditions till C2. Also, for all machining conditions, the effect is more at layers 

immediately beneath the machined surface and it stabilizes as it goes away from 

the surface. Higher thermal impact associated with C6 condition, anneals and 

softens the surface more than the other machining conditions. Higher thermal 

impact is due to the higher discharge energy of arc and short circuit sparks during 

unstable machining conditions. Condition C2 is observed to have least effect on 

subsurface hardness, since there is only a slight dip in the microhardness near to 

machined surface. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.10 Subsurface microhardness profile 

 

 

(a)

0 25 50 75

140

160

180

200

220

M
ic

ro
ha

rd
ne

ss
 (

H
V

)

Depth below surface (µm)

 Level 1 (Least stable condition)

 Level 3

 Level 5 (Most stable condition)

C1 (Highest discharge energy)

C3 (Medium discharge energy)

C5 (Lowest discharge energy)

Machining condition, C6
Machining condition, C4
Machining condition, C2

Depth below surface (μm)

M
ic

ro
h

ar
d

n
es

s 
(H

V
)



 
 

83 
 

4.5.5 Subsurface damages 

Subsurface damages into the machined surface at different machining conditions 

are shown in Fig. 4.11. SEM images of polished cross-sectional surfaces are 

captured for the analysis. Sonication is performed to minimize the effect of 

polishing on subsurface damages. Specimens are immersed in an acetone solution 

which is agitated in ultrasonic frequencies to remove the debris clogged into the 

cracks or features. Most of the subsurface damages are recast layer (RCL) defects, 

which are formed by the re-solidification of molten material back to machined 

surface. The region of higher subsurface damage is understood to be within the 

recast layer by comparing the cross sectional images of wire EDM processed 

surfaces from literature (Sharma et al., 2015; Sharma et al., 2016). The typical 

defects reported in RCL like micro voids, pits, and cracks are observed here. Such 

cracks that run into the machined surface affects the fatigue life, and is the 

primary reason why wire EDM machined components needs further processing 

for aerospace applications. The subsurface damage is observed to deepen from 

machining condition C2 to C6. The deeper recast layers are due to ineffective 

flushing conditions (Fig. 4.11 (e), Fig. 4.11 (d)) whereas the condition which 

promotes easier flushing is seen with near zero recast layer defects (Fig. 4.11 (a)). 

The negligible recast layer is a promising result, since such machining conditions 

can reduce or avoid the post processing requirements.  
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Fig. 4.11 Recast layer defects (a) C2 (b) C3 (c) C4 (d) C5 (e) C6 

4.5.6 EDS analysis 

Energy Dispersive X-Ray Spectroscopy (EDS) analysis is performed on the 

machined surfaces to understand the extend of elemental migration from the wire 

electrode. The traces of foreign elements on machined surface are an undesirable 

feature since it alters the chemical properties of parent material. Since, the wire 

electrode chosen for the study is zinc coated brass, zinc and copper elements are 

found in varying amounts in the machined surface. However, it is found that 

weight % of migrated elements varies with machining conditions. Weight % of 
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zinc reduced from 6.5 % at condition C6 to 2.4 % in C2. Similar reduction is 

found in the case of copper from 2.38 % to 1.81% as seen in Fig. 4.12. Compared 

to C2, in condition C6, wire wear is considerably high as discussed earlier. Thus, 

the traces of material removed from wire can be seen in the workpiece surface. 

This is the reason why traces of zinc and copper is more. Since zinc coating is 

removed almost entirely at C6, greater change is observed in zinc weight %.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.12 EDS analysis of surface machined under condition (a) C2 (b) C6 
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4.5.7 Wire electrode comparison 

Different wire electrodes are considered for performance comparison at different 

machining conditions. Wire electrodes considered are hard zinc coated brass, half 

hard zinc coated brass, hard uncoated brass and half hard uncoated brass. 

Following observations are made from the experiments.  

• Hard wires can resist wire deflection better and thus can reduce geometric 

inaccuracies as seen in Fig. 4.13. The graph shows the average value at 

condition C3 for each wire electrode.  

• Coated wires cuts faster than uncoated wire electrodes as shown in Fig. 4.14. 

• Coated wires resist wire breakages better than uncoated wires. Uncoated 

wires are observed to rupture at an earlier stage than coated wires.  

 

 

 

 

 

Fig. 4.13 Geometric accuracy comparison considering different wire electrodes 

 

 

 

 

 

 

Fig. 4.14 Effect of wire electrode coating on cutting 
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4.6 SUMMARY OF MACHINING STABILITY ANALYSIS 

The chapter delt with studying the effects of unstable machining conditions on 

process failures and surface integrity. The following are the notable findings from 

the study: 

• Unstable machining conditions is experimentally created by varying the 

amount of debris in the spark gap. A methodology is devised to vary the debris 

stagnation possibility by tuning the process parameters like pulse on time, 

pulse off time, and servo voltage.  

• By varying the process stability, two modes of process interruptions are 

observed in this study, wire breakage and spark absence. These two 

machining outcomes are defined as ‘machining failures’ throughout the 

research study.  

• Analysis of both the failures, emphasising on causes, effects and dependency 

on parameters are discussed. Wire breakage happens by debris stagnation 

leading to short circuit predominance in the discharge cycle. Spark absence 

is caused by inability of the applied potential difference to breach the 

dielectric barrier of dielectric in the discharge channel. Wire wear analysis is 

performed, comparing the SEM images of worn wires that comes out of 

machining zone.  

• Apart from causing machining failures, it is found that machining stability 

also affects the surface integrity of machined components. To investigate the 

variation of surface integrity, various aspects like surface roughness, 

geometric accuracies, micro hardness, elemental migration through EDS, 

microstructural study, subsurface defects etc. are analysed.  

• Among various wire electrodes considered, hard zinc coated brass is found to 

perform better in terms of productivity and geometric accuracy. Thus, hard 

zinc coated brass wire is considered as the wire electrode throughout this 

research study henceforth.  
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CHAPTER 5 

 

OFFLINE MODELING OF WIRE EDM FAILURES 

 

 

5.1 INTRODUCTION  

The chapter deals with development of offline failure prediction models for wire 

EDM process. Initially a neural network multi class classifier is developed to 

predict machining outcomes. The mode of failure is accurately predicted by this 

model. Next, the machining stability is analysed by considering mean gap voltage 

variation (ΔVm). An Adaptive neuro fuzzy inference system (ANFIS) model is 

trained to predict ΔVm. To ensure breakage free operation, a decision support 

system is developed based on the model predictions to set the initial parameters.  

5.2 PREDICTION AND ANALYSIS OF PROCESS FAILURES BY ANN 

CLASSIFICATION 

The section presents an offline model based on artificial neural network (ANN) 

to classify the machining failures during wire EDM of Inconel 718. The presented 

offline models are inexpensive, computationally fast means of failure prediction. 

Offline models can work in integration with advanced sensor based online 

monitoring systems to a set up the initial parameters. ANN classification is a 

supervised leaning technique in machine learning which predicts the class labels 

of input data. To train the model, 81 full factorial experiments are conducted. The 

developed multi class classifier predicts the machining outcomes – wire 

breakage, spark absence, or continuous machining. A detailed wire wear analysis 

is also presented to understand the stages of wire rupture.  

5.2.1 Wire EDM process failures 

When an input parameter is set for a wire EDM operation, it is expected to 

machine the profile continuously without any interruptions. However, machining 



 
 

89 
 

interruptions can also happen due to unexpected machining failures. This can 

happen due to non-ideal process parameter combinations, or due to the inherent 

stochastic nature of the process, or due to external uncontrollable factors. Wire 

breakage or wire rupture is one of the most commonly reported failures. Another 

case is called spark absence when the machining halts due to very less or zero 

discharge frequency. These process interruptions reduce the process efficiency, 

productivity and sustainability by wastage of energy and consumables. The 

failure cases are elaborated in the following subsections. 

Wire breakage 

Wire breakage or wire rupture happens when the wire material deteriorates to a 

level, where the wire loses its strength to withstand the axial tension. Unstable 

machining conditions leading to debris accumulation in the spark gap causes wire 

breakage. The particles removed in the previous discharge cycle, called debris, 

are expected to be removed from the spark gap during the pulse off time. The 

ideal process cycle involves dielectric breakdown during the pulse on time, 

producing an electric discharge causing material removal, followed by the 

restoration of dielectric property during the off time by flushing away the debris. 

However, this series of breakdown and renewal of dielectric in the spark gap is a 

highly idealized situation. Practically, the debris generated are only partially 

removed from the spark gap. Thus, the dielectric properties keep varying with 

respect to the amount of debris suspended in the spark gap. Higher the number of 

debris, greater is the dielectric conductivity. This situation is difficult to control, 

since the amount of debris in the spark gap at any time is random and 

unpredictable. Also, the spark gap distance itself is difficult to be maintained by 

the machine feedback system. Additionally, the wire electrode, which is expected 

to be held straight by applying an axial tension is often subjected to lateral forces 

also, due to the flushing pressure, gas bubble generation and discharge 

phenomena. This causes the wire to deflect and vibrate during spark discharge.  

The overall effect is that the sparks generated between the electrodes are not 

always the ideal type. Due to the instabilities in the machining zone, the sparks 
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often can be higher intensity short circuit discharges, which is one of the main 

reasons for wire breakage. The short circuit discharge happens because of spark 

gap bridging by debris stagnation. Debris stagnation happens when the discharge 

energy is higher than ideal, when the pulse off time is lesser, and the spark gap is 

narrower than required for an effective flushing. Predominance of short circuit 

sparks are undesirable in a pulse cycle, due to its higher discharge energy and 

spark frequency than normal sparks. Short circuit sparks accelerate the wire wear 

and will eventually cause rupture. At lesser wire feed rates, chances of multiple 

sparks to happen from the same spot is more, causing deeper craters or cracks in 

the wire surface.  

Spark absence 

The spark absence happens when the spark gap condition is not ideal for sustained 

repetitive sparks. This happens when the applied voltage across the electrodes is 

not sufficiently high to completely ionize the dielectric fluid across the electrodes. 

Such situations lead to gradual reduction of discharge frequency, eventually 

causing the machining to halt. This happens when the open circuit voltage is too 

less or the spark gap is too high or the pulse on time is insufficient. In such 

conditions, the current discharge will be absent for the entire pulse on time 

duration. These pulses are called open circuit pulses. In a pulse train, if the open 

circuit pulses predominate the other pulses, then the cutting speed will come 

down to zero. In spark absence case, current discharges are either absent, or its 

frequency is very less for any effective machining to happen. Table 5.1 gives the 

details of different machining outcomes.  
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Table 5.1 Classification of machining outcomes 

Machining outcomes Reason Effect on machining 

Spark Absence 
High spark gap, less 

discharge energy 

Machining does not 

happen, zero cutting 

speed 

Normal spark 

machining 

Ideal conditions for 

machining 

Machining happens 

typically 

Wire breakage 

Narrow spark gap, high 

discharge energy, less 

pulse off time 

Process discontinuity, 

Machined surface 

defects, require manual 

or auto rethreading  

 

5.2.2 Experimental details 

Using an Electronica Ecocut wire EDM machine, straight cuts of 10 mm length 

are machined as shown in Fig. 5.1. The work material considered for the study is 

Inconel 718, due to its superior mechanical properties and industrial applications 

in aerospace sector. The experiments are replicated thrice to rule out experimental 

errors. The input parameters and levels considered to generate training dataset are 

shown in Table. 5.2. Four parameters are varied in three levels to have 81 

experimental runs according to full factorial experimental design. Full factorial 

design considers every combination of considered factor levels. Input parameters 

considered are pulse on time, servo voltage, pulse off time, and wire feed rate. 

The parameters are chosen based on their higher influence on machining failures. 

Wire EDM machine limits, pilot experiments and literature survey helped to fix 

the parameter ranges and levels. The maximum permissible values of each 

parameter is selected as their respective range to study the failures at the limiting 

conditions. Once the maximum workable ranges are selected for each parameter, 

the levels are selected based on full factorial experimental design. Certain other 

parameters are kept constant due to machine constraints and its lesser influence 

to the failure phenomena as given in Table 5.3. The dielectric fluid chosen is 

deionized water of conductivity ~ 20 μS/cm.  
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Table 5.2 Process parameters and levels 

Parameters 
Pulse on 

time 
Ton (µs) 

Pulse off time 
Toff (µs) 

Servo 
voltage 
SV (V) 

Wire feed 
rate 

WF (m/min) 

Level 1 100 20 20 3 

Level 2 110 40 40 6 

Level 3 120 60 60 9 

Table 5.3 Constant machine parameters  

Parameter  Value 

Wire electrode diameter 0.25 mm 

Discharge current 11 A 

Discharge voltage  12 V 

Flushing pressure  1.96 bar 

Wire Tension 10 N 

Dielectric fluid Deionized water 

The responses considered for the study are the machining outcomes like wire 

breakage, spark absence, and normal (continuous) machining. Training dataset 

consists of the input parameters with their corresponding class labels. Class labels 

are the machining outcomes in this case. Response variables are considered in 

categorical form with either 0/1 depending on the true event. 1 denotes 

occurrence of an event and vice versa. For example, consider a case where a 

parameter combination has resulted in wire breakage. Then the ‘wire breakage’ 

class label is ‘1’ and both ‘normal machining’ and ‘spark absence’ class labels 

are ‘0’. In vectorial form, the response vector is [0 1 0] since the responses are 

recorded in the order ‘spark absence’, ‘wire breakage’, ‘normal machining’. The 

event wire breakage is recorded if the wire breaks before the 10 mm straight cut 

with the input parameter settings. Similarly, if the sparks die out and halts the 

machining before 10 mm, then spark absence is recorded.  
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ANN classifier is modelled using MATLAB 2019a software. Additionally, 20 

experiments are conducted as confirmation experiments to test the model 

performance in practical situations. Zeiss GeminiSEM 300 FESEM is used for 

microstructural and Energy Dispersive X-Ray Spectroscopy (EDS) analysis of 

worn wire samples and machined surfaces. AEP Nanomap non-contact 

profilometer is used to capture 3D surface profile images for morphological 

comparison.  

 

 

 

 

 

Fig. 5.1 Straight cuts machined by wire-EDM process 

5.2.3 ANN classification 

Classification problem recognizes the class label of a data sample, based on the 

learnings from a training dataset containing input datapoints and its 

corresponding class labels. The class label in this case is the group in which the 

datapoint is a part of. The datapoint is the input parameter vector and the class is 

the machining outcome. The classifier learns the hidden pattern or the common 

features of the datapoints that belong to a particular class label. The trained 

classifier model is capable of predicting the class label of any new dataset, outside 

the training data. Geometrically, the classification models construct a decision 

boundary in a multi-dimensional space to seperate the datapoints to various 

groups. The decision boundary can be a curve, surface, or hyper surface 

depending on the dimension of datapoint. Such a decision boundary is shown in 

Fig. 5.2. The classification becomes complex if the class prediction involves non-
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linear, higher order relationship between the samples and outcomes. Wire EDM 

failure prediction is one such case where a complex and stochastic relationship 

exists between the parameters and the machining outcomes. In this study, ANN 

classification is chosen based on its capability to handle higher order non-linear 

data efficiently.  

 

 

 

 

 

Fig. 5.2 (a) Datapoints belonging to multiple classes in 2D space (b) non-linear 

2D decision boundaries separating the classes (Ghojogh and Crowley, 2019) 

The ANN model computes the probability (likelihood) of occurrence of all the 

three events for any given input parameter combinations. The event which is most 

likely to happen, is the one with maximum probability. A feed forward back 

propagation ANN is considered for the study. The structure of the ANN classifier 

is shown in Fig. 5.3. A 4-10-3 structure is chosen based on the classifier accuracy. 

The classifier is designed, trained and developed using neural pattern recognition 

tool in Matlab 2019a. A comparison of model accuracies for different ANN 

structures are given in Table 5.4. The optimal structure has 4 input layers (Pulse 

on time, pulse off time, servo voltage, and wire feed rate), 10 neurons in hidden 

layer and 3 output layers (Probability of spark absence, probability of wire 

breakage, and probability of normal machining). Out of the 81 training samples, 

57 (70 %) samples are used for training, another 12 (15 %) samples for testing 

and remaining 12 (15 %) samples for validation. SoftMax function gives the final 

layer output in probabilistic terms. Since the classes are exclusive, the sum of 

Decision boundaries 

Classification 
model 
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responses should be equal to 1. The details of the 81 experiments conducted with 

corresponding machining outcomes are given in Table 5.5. 

 

 

 

 

 

 

Fig. 5.3 Structure of multi-class neural network classification model 

Table 5.4 Accuracies of different ANN structures 

S. No. 
Number of neurons in 

hidden layer 
ANN structure 

Model 
accuracy 

1 1 4-1-3 74.1 % 

2 2 4-2-3 85.2 % 

3 3 4-3-3 71.6 % 

4 4 4-4-3 24.7 % 

5 5 4-5-3 82.7 % 

6 6 4-6-3 86.4 % 

7 7 4-7-3 81.5 % 

8 8 4-8-3 86.4 % 

9 9 4-9-3 88.9 % 

10 10 4-10-3 90.1 % 

11 11 4-11-3 79.0 % 

12 12 4-12-3 84.0 % 

13 13 4-13-3 80.2 % 

14 14 4-14-3 75.3 % 

15 15 4-15-3 85.2 % 

Pulse on time
TON

Pulse off time
TOFF

Servo voltage
SV

Wire feed rate
WF

P (Spark Absence)

P (Wire Breakage)

P (Normal Machining)

Output layer

(Probability of each 

machining outcome)
Input layer

(Process parameters)
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Table 5.5 Experimental results 

S. No. 

Input Parameters 

 

Observed Outcomes 

Ton 
(µs) 

Toff 

(µs) 

Servo 
voltage 

(V) 

Wire 
feed 

(m/min) 

Spark 
Absence 

Wire 
Breakage 

Normal 
Machining 

 
“1” – Occurrence of an event 

“0” – Absence of an event 

1 100 20 20 3  0 0 1 
2 100 20 20 6  0 0 1 
3 100 20 20 9  0 0 1 
4 100 20 40 3  0 0 1 
5 100 20 40 6  0 0 1 
6 100 20 40 9  0 0 1 
7 100 20 60 3  1 0 0 
8 100 20 60 6  0 0 1 
9 100 20 60 9  0 0 1 
10 100 40 20 3  0 0 1 
11 100 40 20 6  0 0 1 
12 100 40 20 9  0 0 1 
13 100 40 40 3  0 0 1 
14 100 40 40 6  0 0 1 
15 100 40 40 9  0 0 1 
16 100 40 60 3  1 0 0 
17 100 40 60 6  1 0 0 
18 100 40 60 9  1 0 0 
19 100 60 20 3  1 0 0 
20 100 60 20 6  1 0 0 
21 100 60 20 9  0 0 1 
22 100 60 40 3  1 0 0 
23 100 60 40 6  1 0 0 
24 100 60 40 9  1 0 0 
25 100 60 60 3  1 0 0 
26 100 60 60 6  1 0 0 
27 100 60 60 9  1 0 0 
28 110 20 20 3  0 1 0 
29 110 20 20 6  0 1 0 
30 110 20 20 9  0 1 0 
31 110 20 40 3  0 0 1 
32 110 20 40 6  0 0 1 
33 110 20 40 9  0 0 1 
34 110 20 60 3  0 0 1 
35 110 20 60 6  0 0 1 
36 110 20 60 9  0 0 1 
37 110 40 20 3  0 1 0 
38 110 40 20 6  0 1 0 
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39 110 40 20 9  0 1 0 
40 110 40 40 3  0 1 0 
41 110 40 40 6  0 0 1 
42 110 40 40 9  0 0 1 
43 110 40 60 3  0 0 1 
44 110 40 60 6  0 0 1 
45 110 40 60 9  0 0 1 
46 110 60 20 3  0 0 1 
47 110 60 20 6  0 0 1 
48 110 60 20 9  0 0 1 
49 110 60 40 3  0 0 1 
50 110 60 40 6  0 0 1 
51 110 60 40 9  0 0 1 
52 110 60 60 3  0 0 1 
53 110 60 60 6  0 0 1 
54 110 60 60 9  0 0 1 
55 120 20 20 3  0 1 0 
56 120 20 20 6  0 1 0 
57 120 20 20 9  0 1 0 
58 120 20 40 3  0 1 0 
59 120 20 40 6  0 1 0 
60 120 20 40 9  0 1 0 
61 120 20 60 3  0 1 0 
62 120 20 60 6  0 0 1 
63 120 20 60 9  0 0 1 
64 120 40 20 3  0 1 0 
65 120 40 20 6  0 1 0 
66 120 40 20 9  0 1 0 
67 120 40 40 3  0 1 0 
68 120 40 40 6  0 1 0 
69 120 40 40 9  0 1 0 
70 120 40 60 3  0 0 1 
71 120 40 60 6  0 0 1 
72 120 40 60 9  0 0 1 
73 120 60 20 3  0 0 1 
74 120 60 20 6  0 0 1 
75 120 60 20 9  0 0 1 
76 120 60 40 3  0 0 1 
77 120 60 40 6  0 0 1 
78 120 60 40 9  0 0 1 
79 120 60 60 3  0 0 1 
80 120 60 60 6  0 0 1 
81 120 60 60 9  0 0 1 
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5.2.4 Performance of classifier 

The classifier is trained using a scaled conjugate gradient algorithm. Model 

performance is evaluated by cross entropy loss function. The loss function 

compares the predicted probability with the ground truth (0 or 1), and a score is 

computed based the prediction error. The model performance is presented as a 

confusion matrix in Fig. 5.4. The matrix shows the classification accuracy based 

on the true class label. The classification accuracy of the model in the testing 

phase is 91.7 % and the overall accuracy is 90.1 %. The performance of the model 

is further evaluated by conducting confirmation tests in the following section.  

 

 

 

 

 

 

 

 

 

 

Fig. 5.4 Confusion matrix for classification model 
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5.2.5 Confirmation experiments 

 Twenty confirmation experiments are conducted to test the model performance 

in real world situations. To perform the confirmation tests, 20 sample datapoints 

are randomly considered. The model predictions are then compared with the 

actual machining outcome. The machining outcomes of 19 out of 20 cases are 

true to the predicted outcomes, which gives a model accuracy of 95 % during 

confirmation tests. The confirmation test results are given in Table 5.6. The 

prediction accuracy of the model for each class label is tabulated in Table 5.7.  

 Table 5.6 Results of confirmation experiments 

S. 
No. 

Input Parameters 

 

Outcomes 

Ton 
(µs) 

Toff 

(µs) 

Servo 
voltage 

(V) 

Wire 
feed 

(m/min) 

Predicted 
class 

Actual 
class 

1 111 47 47 7  NM NM 
2 109 37 31 4  NM NM 
3 106 24 22 4  WB NM 
4 114 22 28 8  WB WB 
5 107 29 23 6  WB WB 
6 110 22 26 5  WB WB 
7 106 29 47 5  NM NM 
8 103 54 49 7  SA SA 
9 105 53 60 6  SA SA 
10 102 54 21 6  NM NM 
11 102 51 40 6  NM NM 
12 109 47 21 9  NM NM 
13 112 41 37 3  NM NM 
14 102 49 44 5  SA SA 
15 117 43 42 4  NM NM 
16 109 20 27 4  WB WB 
17 100 47 20 4  NM NM 
18 101 49 57 3  SA SA 
19 113 55 44 4  NM NM 
20 104 46 59 5   SA SA 

SA – Spark absence, WB – Wire breakage, NM – Normal machining 

During the training phase, each data point (input parameter combination) and its 

corresponding ‘true class label’ is fed to the ANN classifier model. True class 

label is the actual machining outcome when the machining is performed with a 
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particular parameter combination. Here the probability of the true/actual event is 

1 and other events are 0. For e.g., in case of an event of SA, WB and NM, the 

responses are recorded as [1 0 0], [0 1 0], and  [0 0 1] respectively. During the 

training, the model adjusts its weights and biases in multiple iterations to 

minimize the error between the predicted event and true event. During the testing 

phase, the trained model gives the output as the probability of data points to fall 

into each machining outcomes (which can take the values between 1 and 0). 

Among the 3 probability values, the outcome with maximum probability is the 

predicted event.  

To represent the model prediction graphically, all possible parameter 

combinations are considered as input datapoints. Totally, 247107 datapoints are 

generated and classified. The probability of all possible data points to fall into 

each class is represented graphically as 3D scatter plot in Fig. 5.5 to Fig. 5.7. In 

each figure, the datapoints are divided into three sub categories based on the 

probability of occurrence of an event. A probability of 0.6 and above, indicates 

the maximum likelihood of the event under consideration to happen. A 

probability of 0.4 to 0.6 indicates moderate chances of that event to happen. A 

probability of less than 0.4 indicates minimum possibility of occurrence of the 

particular event. Data points considered for the confirmation tests are shown 

separately in these plots. It can be observed that the events of normal machining, 

wire breakage and spark absence are all falling under appropriate zones in the 

figures.  

Table 5.7 Model performance during confirmation experiments 

Performance Classification result 

Classification of normal machining 10/10 

Classification of spark absence 5/5 

Classification of wire breakages 4/5 

Classification % 95 % 

 

 



 
 

101 
 

 

 

 

 

 

 

 

Fig. 5.5 Scatter plot of normal machining classification probability vs input 

parameters  

 

 

 

 

 

 

 

Fig. 5.6 Scatter plot of wire breakage classification probability vs input 

parameters  

 

Normal machining without failures

Wire breakage occurrence
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Fig. 5.7 Scatter plot of spark absence classification probability vs input 

parameters 

5.2.6 Wire breakage analysis 

The zinc coated wire considered for this study possesses several advantages over 

the uncoated brass wires. Firstly, they cut faster since they can sustain higher 

discharge energy due to ‘heat sink effect’. It protects the inner core from the 

thermal shocks during spark discharges. Also, removal of the more volatile 

surface coating during the machining increases the instantaneous spark gap, 

which enhances the flushability. Thus, the surface roughness is also comparable 

with that of uncoated brass wires. However, during the unstable process 

conditions, excessive discharge energy can cause accelerated degradation of wire 

coating exposing the inner core to the high process heat. Unprotected inner core, 

when exposed to a higher thermal load, can get softened resulting in wire 

breakage. 

To study the mechanism of wire breakage, it is important to understand various 

stages of wire wear leading to wire rupture. For this, worn wire samples are 

examined under SEM, in the increasing order of the wire breakage probability as 

Spark Absence
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predicted by the ANN classifier. The experiment numbers 10, 13, 15, and 6 

having the wire breakage probabilities 0.01, 0.21, 0.42, and 0.9 respectively are 

chosen for this analysis. As expected, Exp. No. 6 with 90 % likelihood of wire 

breakage, did eventually result in wire break failure. The broken wire tip is 

examined in this case. Fig. 5.8 shows the SEM images of worn wire surfaces to 

study the stages of wire wear leading to rupture. Exp. No. 10 corresponds to 

minimal wire break probability (0.01) and displays negligible wear to its coated 

surface as evident from Fig. 5.8 (a). A melt pool showing initial phase of zinc 

coat removal can be seen.  The wire surface belonging to Exp. No. 13, shown in 

Fig. 5.8 (b) displays a relatively greater damage to the zinc coating with 

considerable amount of coating getting removed. Exp. No. 15 corresponds to          

42 % wire breakage chances, whose SEM wire image is shown in Fig. 5.8 (c). 

The wire coating is entirely eroded, with a visible melt pool covering the entire 

wire surface. There are deeper craters exposing the inner core and the surface 

looks coarser than the previous cases. Additionally, several debris can be seen 

impinged to the worn wire surface, indicating the phenomenon of debris 

accumulation and short circuit sparks.  

Once the coating is removed, any further higher energy arc or short circuit sparks 

can result in accelerated wire wear and rupture. Fig. 5.8 (d) shows a case of 

broken wire tip (Exp. No. 6) where the tip is elongated and conical in shape with 

presence of debris on the wire surface. If the spark gap is stagnated with debris, 

the short circuit sparks will dominate the pulse cycle instead of the normal sparks. 

Such sparks are higher in intensity and frequency, and can cause multiple deep 

craters at the same or adjacent wire surface locations. As the wire damages 

increases, a threshold will be reached, where the wire can no longer withstand the 

axial tension. At this limit, the wire elongates by wire diameter reduction at the 

point of deepest damage. This continues till the wire ruptures at the point of 

minimum wire cross section. This is the reason for conical wire tip with 

substantial wear at the adjacent area.  
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Fig. 5.8 Categories of wire wear (a) minimal degradation (Exp. No. 10)  

(b) intermediate degradation (Exp. No. 13) (c) severe degradation (Exp. No. 15)  

(d) failed wire tip (Exp. No. 6) 

To support the analysis of wire wear mechanism, EDS analysis of the worn wire 

surface is conducted. Fig. 5.9 shows the comparison of elemental composition of 

wire surfaces considering to Exp. No. 10 and Exp. No. 15. Due to higher wire 

wear, zinc coating is removed from the wire surface in the latter case, resulting 

in lesser weight % of zinc compared to the former. Higher carbon and oxygen 

content indicates the corrosive nature of the wire surface subjected to higher heat 

energy.  
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Fig. 5.9 EDS images of worn zinc coated brass wire surface at  

(a) mild wire wear (Expt. No. 10) (b) sever wire wear (Expt. No. 15)  

The details regarding the observed failures are given in Table 5.7. Wire breakages 

are observed to happen in two distinct types. Type I failure is a catastrophic 

failure where the rupture happens almost immediately after the commencement 

of machining. Another case is when the instability gradually builds up and the 

failure happens progressively. With respect to the profile length machined, 

earliest occurrence of wire breakage is at 0.09 mm. The latest occurrence is 

reported after machining 4.81 mm length. Type I failure is observed 

corresponding to experiment numbers 55, 57 and 59. The reason is the highly 

unideal parameter combination of highest pulse on time, lowest pulse off time 

and servo voltage. Such a parameter setting creates high number of debris, with 

less time and inter electrode gap to clear them before the next pulse on cycle. This 

results in sudden gap bridging and thus the pulse train will be dominated by high 

energy short circuit discharges. The cumulative effect is a sudden machining 
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failure by wire breakage. Type II failure is exhibited by experiment numbers 28, 

30, and 37. Here, the conditions are still unideal, but unlike in the previous case 

the debris accumulation takes place gradually. As the amount of debris in the 

spark gap increases, the proportion of undesirable sparks will increase till a 

critical point of sudden wire rupture. Excessive erosion of protective wire 

coating, coupled with high thermal loads are the reason for failure. Contrary to 

the wire break failures, spark absence failures happened at the start of the 

machining.  

Table 5.7 Details of machining process failure situations  

Type of 
failure 

Exp No. 
Length machined 

(mm) 
Time to 

failure (min) 

Spark absence 
7, 16, 17, 18, 
19, 20, 22, 23,  
24, 25, 26, 27 

0 - 

Wire breakage 
 

28 4.61 3.12 

29 4.81 3.10 

30 4.64 3.09 

37 4.53 4.20 

38 3.91 3.86 

39 4.01 3.84 

40 4.57 3.16 

55 0.16 0.52 

56 0.32 0.61 

57 0.09 0.51 

58 0.44 0.72 

59 0.27 0.67 

60 0.33 0.68 

61 2.40 1.47 

64 2.37 1.38 

65 2.21 1.37 

66 2.36 1.37 

67 2.57 1.61 

68 2.02 1.60 

69 1.96 1.59 
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5.2.7 Surface integrity variations during normal machining 

Even in failure free continuous machining cases, the machined surface integrity 

is dependent on the process parameter combinations. The classifier model has 

limited capability to perform quantitative analysis regarding the part quality. 

Typically, an optimization study is recommended to maximize process 

performance in terms of part quality. However, several useful inferences 

regarding the machined part quality can be made based on the classifier responses 

for a particular parameter setting. As a rule of thumb, higher the probability of 

normal machining, better will be the machined quality. This section compares the 

surface integrity of two cases having considerably different probability of normal 

machining.   

Fig. 5.10 (a) and Fig. 5.10 (b) shows the SEM images of machined surface 

corresponding to Exp. No. 11 and Exp. No. 15 respectively. Exp. No. 11 has the 

following parameter settings:  Ton = 102 μs, Toff  = 51 μs, SV = 40 V and WF = 6 

m/min. The smaller pulse on time indicates lesser debris generation due to low 

discharge energy. When combined with high pulse off time, there is enough time 

to flush away the debris. Spark gap is not too narrow either, preventing gap 

bridging. Wire feed rate of 6 m/min also ensured that consecutive sparks are not 

happening from the same wire spot. The effect is a smooth surface with very 

fewer micro defects and features as shown in Fig. 5.10 (a). Fig. 5.11 (a) shows 

the cross-sectional image of the same surface to understand the subsurface 

defects. It can be seen that the machining has caused minimal subsurface damage. 

There are no visible pits, cracks or craters which runs deep to the inner surface. 

On the contrary, SEM image of the machined surface shown in Fig. 5.10 (b), is 

very coarse in nature with several undesirable micro features like micro pits, 

voids, and globules. Also, several debris particles are impinged to the machined 

surface in this case. Compared to the previous case, here the pulse on time                 

(Ton = 117 μs) is much higher, combined with lower levels of pulse off time (Toff  

= 43 μs), servo voltage (SV = 40 V), and wire feed rate (WF = 4 m/min). This 

results in larger volume of debris generation compared to the previous case, but 

with limited pulse off time and spark gap is available for its effective removal. 
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The condition can cause gap bridging and short circuit sparks, which is the reason 

for the coarser surface. The polished cross-sectional image of the same surface is 

shown in Fig. 5.11 (b). The subsurface damage is more prominent than the 

previous case. Numerous micro pits can be seen penetrated into the parent 

material.  

 

 

 

 

Fig. 5.10 FE-SEM images showing machined surface morphology after  

(a) Expt. No. 11 (b) Expt. No. 15 

Fig. 5.12 shows the surface morphology comparison of these two cases using 

non-contact 3D surface profilometer images. Fig. 5.12 (a) is much smoother with 

shallow peaks and valleys, whereas Fig. 5.12 (b) is coarse with high peaks and 

deep valleys. Table 5.8 gives the surface roughness comparison for all the 

‘normal machining’ cases of confirmation tests. Exp. No. 11 and Exp. No. 15 has 

Ra values of 0.97 μm and 2.64 μm respectively. This is in agreement with the 

observations so far. 

 

 

 

 

Fig. 5.11 Cross sectional view of machined surfaces under SEM after  

(a) Expt. No. 11 (b) Expt. No. 15 
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Table 5.8 Surface roughness comparison for ‘Normal machining’ in 

confirmation tests 

S. No. 

Input Parameters 
Ra 

(µm) Ton 
(µs) 

Toff 
(µs) 

Servo voltage 
(V) 

Wire feed 
(m/min) 

1 111 47 47 7 1.36 

2 109 37 31 4 1.76 

7 106 29 47 5 1.24 

10 102 54 21 6 1.12 

11 102 51 40 6 0.97 

12 109 47 21 9 1.65 

13 112 41 37 3 1.97 

15 117 43 42 4 2.64 

17 100 47 20 4 1.60 

19 113 55 44 4 1.45 

  

 

 

 

 

 

Fig. 5.12 Surface morphology comparison of machined surfaces using non-

contact 3D profilometer images after (a) Expt. No. 11 (b) Expt. No. 15 

 

It shall be noted that only a few limited cases can be explained intuitively by 

considering its parameter combinations. In most of the practical cases, due to the 
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complex interaction effects, a separate optimization study is required to maximize 

the surface integrity.  

5.3 MODELLING MEAN GAP VOLTAGE VARIATION TO PREDICT 

WIRE BREAKAGES 

 

5.3.1 Introduction 

Unstable machining conditions during the Wire EDM process restricts its 

capability by causing machining failures and poor part quality. Wire breakage is 

the most commonly reported means of process failure. It hinders the productivity 

by consuming extra machining time for wire rethreading. Additionally, the 

process efficiency is affected by material and energy wastage. One main reason 

for unstable machining conditions are debris accumulation and stagnation due to 

improper flushing. A novel in-process data parameter called mean gap voltage 

variation (ΔVm) is introduced in this section as an indicator of debris 

accumulation. ΔVm is the mean difference between set servo voltage and the 

actual real time voltage across the wire electrode and the workpiece. Usually, an 

inbuilt feedback system controls the spark gap by maintaining the set servo 

voltage between the electrodes. ΔVm represents the voltage deviations from the 

set voltage value over a machining period and it can be considered as an indicator 

of machining instability. This section deals with the modelling of this mean gap 

voltage variation using ANFIS soft computing technique. A decision support 

system is developed which utilizes model predictions to forecast events of wire 

breakage. Also, the parameter can give useful insights about the machined part 

quality. The section demonstrates the potential of extracting in-process data 

features to predict the overall machining stability. The knowledge gained from 

this section is further expanded in the forthcoming chapters to develop an online 

condition monitoring system using voltage and current sensors.   
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5.3.2 Experimental details  

The profiles machined are straight cuts of 10 mm length. Zinc coated brass wire 

and deionized water is chosen as the wire electrode and dielectric fluid. The mean 

gap voltage variation is recorded using a Tektronix digital multimeter model 

DAQ 6510. The sample reading of real-time voltage fluctuation for a servo 

voltage of 50 V is given in Fig. 5.13. The mean voltage value is also displayed in 

the integrated computer of wire EDM as shown in Fig. 5.14. On cross checking, 

the displayed value and the measured value are found to be in good agreement.  

 

 

 

 

 

 

 

Fig. 5.13 (a) Real-time gap voltage reading for a set voltage of 50 V  

(b) Gap voltage measurement by digital multimeter 

 

 

 

 

 

 

 

 

Fig. 5.14 (a) Machine tool (b) Integrated computer displaying mean gap voltage  

 

Mean gap voltage (Vm)
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Table 5.9 RSM input parameters and levels 

Process parameters 

Level 1 Level 2 Level 3 Level 4 Level 5 

Axial 
point 

(High) 

Cube 
point 

(High) 

Centre 
point 

Cube 
point 
(Low) 

Axial 
point 
(Low) 

Pulse on Time (µs) 120 115 110 105 100 

Pulse off Time (µs) 70 60 50 40 30 

Servo voltage (V) 70 60 50 40 30 

Wire feed rate 
(m/min) 

10 8 6 4 2 

 

Thirty-one experiments are conducted according to central composite design 

(CCD) of response surface methodology (RSM). The input parameters 

considered are pulse on time, pulse off time, servo voltage, and wire feed rate. 

The process parameters and levels are given in Table 5.9. The parameter ranges 

and levels are selected based on pilot experiments, machine manual and literature 

survey. Since the objective is to study the failure condition, the extreme ranges 

are considered for each parameter. A few other parameters are maintained 

constant during the experiments as given in Table 5.10 due to machine 

constraints. Responses recorded are events of wire breakages and mean gap 

voltage variation. 

Table 5.10 Constant machining parameters 

Parameter  Value 

Wire electrode diameter 0.25 mm 

Discharge current 11 A 

Discharge voltage  12 V 

Flushing pressure  1.96 bar 

Wire tension 10 N 

Dielectric fluid Deionized water 
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5.3.3 Mean gap voltage variation (ΔVm) 

The mean gap voltage variation (ΔVm) is an in-process data which quantifies the 

average deviation of inter electrode voltage from the set voltage. Ideally, under a 

stable EDM cycle, entire debris will be cleared after each discharge duration 

restoring the dielectric properties and the voltage deviation is expected to be 

nearly zero. However, in most practical cases the debris is not 100 % removed 

from the spark gap and at least a small amount is always left behind. This results 

in the variation of dielectric property in the spark gap leading to voltage 

fluctuations from the set value. Higher the amount of debris, more will be the 

voltage variation. ΔVm can thus be considered as an indicator of the machining 

stability, since its value can indicate the relative amount of debris accumulation 

in the spark gap. Higher orders of debris accumulation can lead to bridging of 

spark gap and cause short circuit discharges and wire breakages. The method for 

computing ΔVm value is given in Fig. 5.15. The absolute of the difference 

between servo voltage and mean gap voltage (Vm) gives the ΔVm for a particular 

machining run.  

 

 

 

 

 

 

 

 

Fig. 5.15 Method of determining mean gap voltage variation 
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Vm  = mean gap voltage 

SV = servo voltage

ΔVm = mean gap voltage variationWire
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5.3.4 ANFIS modelling of ΔVm and wire break prediction 

The approach for wire breakage prediction is given in Fig. 5.16. The mean gap 

voltage variation is recorded for all 31 experimental runs. As discussed, higher 

the value of ΔVm, greater is the process instability. The experiments are arranged 

in the increasing order of ΔVm to find a limiting value of ΔVm (defined as             

ΔVm, lim), above which the machining failures are reported. Using the conducted 

experiments as training data, an adaptive neuro fuzzy inference system (ANFIS) 

model is developed to predict ΔVm value. The proposed decision support model 

utilizes ANFIS model predictions and experimentally found ΔVm, lim value to 

predict the occurrences of wire breakage for any given input parameter 

combinations. The system compares the predicted value of ΔVm with threshold 

value, ΔVm, lim to warn the operator regarding potential wire break possibilities.  

 

 

 

 

Fig. 5.16 Approach for predicting wire breakage 

The experimental runs and responses are tabulated in Table 5.11. The response 

ΔVm is plotted against the experiment numbers in Fig. 5.17. Wire breakage 

instances are also represented in this figure. Failure free continuous machining is 

observed in 25 out of 31 experiments (with ΔVm < 10.41V). Remaining 6 

experiments (ΔVm > 10.41V) resulted in process interruption through wire 

breakages. Therefore, experimentally, 10.41 V (corresponding to Exp. No. 31) is 

found as the threshold value, ΔVm, lim.  
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Table 5.11 Experimental readings and model predictions 

S. 
No. 

Ton 
(µs) 

Toff 
(µs) 

SV 
(V) 

WF 
(m/min) 

Experimental readings 
Model 

predictions 
Error 

Wire 
breakage 

Mean 
ΔVm(V) 

Std. 
Dev. 

ΔVm. (V) (V) 

1 115 40 60 4 0 9.56 0.2 9.56 0 

2 110 50 50 6 0 4.9 0.4 4.67 0.23 

3 105 60 60 4 0 1.63 0.6 1.63 0 

4 110 50 50 6 0 4.6 0.4 4.67 -0.07 

5 110 50 50 2 0 4.62 0.7 4.62 0 

6 105 40 40 8 0 3.7 0.4 3.7 0 

7 120 50 50 6 1 14.96 0.5 15 -0.04 

8 110 50 50 10 0 5.4 0.4 5.4 0 

9 100 50 50 6 0 1.63 0.5 1.63 0 

10 110 50 50 6 0 5.2 0.5 4.67 0.53 

11 105 60 60 8 0 1.63 0.1 1.63 0 

12 105 60 40 8 0 1.63 0.1 1.63 0 

13 115 40 40 4 1 11.74 0.4 11.7 0.04 

14 115 40 60 8 0 8.54 0.2 8.54 0 

15 110 50 50 6 0 3.5 0.3 4.67 -1.17 

16 110 50 50 6 0 3.9 0.5 4.67 -0.77 

17 105 40 60 8 0 1.63 0.1 1.63 0 

18 110 50 70 6 0 2.08 0.5 2.08 0 

19 110 70 50 6 0 2.08 0.1 2.08 0 

20 105 60 40 4 0 1.63 0.1 1.63 0 

21 115 40 40 8 1 11.74 0.2 11.7 0.04 

22 115 60 60 4 0 9.88 0.2 9.88 0 

23 105 40 60 4 0 1.63 0.1 1.63 0 

24 115 60 40 4 1 11.4 0.6 11.4 0 

25 110 50 50 6 0 4.55 0.6 4.67 -0.12 

26 110 30 50 6 1 12.3 0.3 12.3 0 

27 105 40 40 4 0 3.7 0.2 3.7 0 

28 110 50 30 6 0 7.5 0.6 7.5 0 

29 115 60 40 8 0 8.48 0.6 8.48 0 

30 110 50 50 6 0 6.01 0.2 4.67 1.34 

31 115 60 60 8 1 10.41 0.3 10.4 0.01 
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Fig. 5.17 Determination of mean gap voltage variation limit (ΔVm, lim) 

The experimental data presented in Table 5.11 is used to train the ANFIS model. 

The ANFIS model combines the advantages of both fuzzy and neural network 

tools. The model is suited to model complex non-linear systems. The model takes 

crisp input parameter values and perform fuzzification based on membership 

function. For the current application, gaussian membership functions are selected 

for input parameters with a constant output membership function. The model 

incorporates a hybrid learning algorithm combining gradient descent and least 

square techniques. ANFIS training parameters are given in Table 5.12. The 

gaussian membership function parameters according to Equation. No. 5.1 is given 

in Table 5.13.  

µ(𝑥) = 𝑒𝑥𝑝 (
−(𝐶𝑖−𝑥)2

𝑎𝑖
2 )    (5.1) 
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Table 5.12 ANFIS training parameters  

Layers 5 

Data set  31 x 4 

Responses 1 

Membership function Gaussian  

Learning algorithm Least squares, gradient descent  

Number of epochs  300 

Output function  Constant  

 

Table 5.13 Parameters of gaussian membership function 

Factors 
Low Medium High 

a c a c a c 

Ton 4.25 100 4.25 110 4.25 120 

Toff 8.5 30 8.5 50 8.5 70 

SV 8.5 30 8.5 50 8.5 70 

WF 1.7 2 1.7 6 1.7 10 

 

The surface plot of mean gap voltage variation with respect to input parameters 

is given in Fig. 5.18. The performance comparison of ANFIS model comparing 

the experimental and predicted values is given in Fig. 5.19. The model is found 

very accurate in the prediction of mean gap voltage variation value.  
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Fig. 5.18 Surface plots showing the influence of process parameters on ΔVm 
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5.3.5 Human computer interaction – wire break alert 

 A wire break alert system is developed to alert the operator regarding a potential 

wire break occurrence for any given parameter settings based on the predicted 

mean gap voltage variation value from the ANFIS model. The proposed rule-

based system checks whether the ANFIS output value (ΔVm) crosses the 

threshold (ΔVm, lim). In case ΔVm > ΔVm, lim, a wire break alert is sent, requesting 

the operator to retune the parameter settings. Otherwise, the operator is permitted 

to continue with the given settings. The logic flow diagram for this interaction 

system is given in Fig. 5.20.  

 

 

 

 

 

 

 

 

Fig. 5.19 Comparison of predicted values with actual values for ΔVm 

5.3.6 Confirmation experiments  

Nine additional experiments are conducted to test the model performance in 

actual machining situations. The ANFIS model succeeded in predicting the ΔVm 

values very accurately. Also, based on ANFIS predictions, the alert system is 

successfully able to anticipate the wire breakages in every failure instance. The 

details of the confirmation test results are given in Table 5.14. The alert messages 

given to the operator in the case of wire breakage and normal continuous 

machining are shown in Table 5.15.  
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Fig. 5.20 Logic flow diagram for wire break alert 

Table 5.14 Confirmation experiments 

S. 
No. 

Ton 
(µs) 

Toff 
(µs) 

SV 
(V) 

WF 
(m/min) 

ANFIS 
ΔVm 

Exp. 
ΔVm  

Model 
prediction 

Experimental 
observation 

1 115 40 30 3 9.79 8.8 CM  CM  

2 115 30 40 3 8.57 8.4 CM  CM  

3 120 30 30 7 14.5 15.2 WB WB 

4 120 30 40 4 12 10.8 WB WB 

5 105 45 40 5 3.28 3.5 CM  CM  

6 110 35 40 10 7.91 8.05 CM  CM  

7 118 33 39 4 11.8 12 WB WB 

8 112 43 49 9 7.33 7.25 CM  CM  

9 103 33 31 5 2.77 2.5 CM  CM  

CM – Continuous machining, WB – wire breakage 

 

Start

Input parameter 
settings

ANFIS

Is ΔVm < ΔVm, lim

Intimate the operator, “The 
selected parameters will result 
in uninterrupted machining”

Intimate the operator, “The 
selected parameters will result in 

wire breakages. Kindly select 
different parameter settings”

ΔVm

End

Yes

No

Auxiliary program for ‘wire break’ prediction

ANFIS model for ‘ΔVm’ prediction
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Expt. No. 3 and Exp. No. 5 from confirmation experiments are chosen to 

demonstrate the working of alert system. Exp. No. 3 resulted in wire breakage 

due to a high pulse on time (120 μs), low pulse of time (30 μs), and low servo 

voltage (30 V). In comparison, Exp. No. 5 resulted in continuous machining due 

to a comparatively lower pulse on time (105 μs), high pulse off time (45 μs) and 

high servo voltage (40 V).  The wire break alert system suggested the operator to 

select different parameter settings in former case. Fig. 5.21 compares the model 

predictions and experimental readings of ΔVm during confirmation tests.  

Table 5.15 Wire break intimation based on ANFIS model predictions 

Exp. No. Model input 
Model output - wire breakage 

prediction 

3 

Pulse on time = 120 µs 
Pulse off time = 30 µs 
Servo voltage = 30 V 
Wire feed rate = 7 m/min 

Mean gap voltage variation = 14.5 V 
‘Gap voltage variation will lead to 
wire breakages. Kindly select 
different input parameter settings’ 

5 

Pulse on time = 105 µs 
Pulse off time = 45 µs 
Servo voltage = 40 V 
Wire feed rate = 5 m/min 

Mean gap voltage variation = 3.28 V 
‘Selected input parameter settings 
will result in uninterrupted 
machining’ 

 

 

 

 

 

 

 

Fig. 5.21 Confirmation tests comparison of ANFIS responses with 

experimental readings 
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5.3.7 Surface integrity analysis 

Apart from predicting wire break failures, ΔVm can also indicate the part quality 

of the machined part. This is because, machining stability not only effects the 

process failures, but also the surface quality, as discussed in Chapter 4. Since 

ΔVm is an indicator of machining stability, the parameter is also capable of 

representing relative machined part quality. In order to compare the surface 

integrity of the machined surface, the predicted value of ΔVm is categorised into 

three, as shown in Table 5.16. From the SEM images of the machined surfaces 

shown in Fig. 5.22, it can be observed that the surface quality decreases with 

increase in mean gap voltage variation. Fig. 5.22 (a) shows a smooth surface with 

no visible micro defects or features in the machined area. Fig. 5.22 (b) is 

comparatively uneven with several micro voids and globules in the machined 

surface. Fig. 5.22 (c) on the other hand is visibly much coarser than the previous 

two cases with a lot of undesirable features like micro globules, pits, cracks, voids 

and debris. Higher value of ΔVm is associated with higher amount of debris 

accumulation, which causes more harmful short circuit discharges in the pulse 

cycle. Such discharges are known to produce coarser surfaces due to its high 

discharge energy and spark frequency. Quantitative comparison of machined 

surface quality is given in Table 5.17 for the confirmation tests.  

Due to the reasons discussed already, wire wear also differs with respect to the 

mean gap voltage variation, as seen in Fig. 5.23. Wire surface damage can be 

seen to increase with ΔVm ultimately leading to wire breakage. The limit at which 

the wire is unable to withstand the spark gap instability is represented by the in-

process data ΔVm, lim.  

 
Table 5.16 Classification of mean gap voltage variation  

Predicted ΔVm Category 

< 5 Low 

5 to 10 Medium 

>10 High 
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Fig. 5.22 SEM images of machined surfaces with (a) low ΔVm (b) medium ΔVm 

(c) high ΔVm prediction 

Table 5.17 Part quality comparison at different ΔVm predictions 

S. 
No. 

ΔVm 
(V) 

ANFIS 

ΔVm (V) 
Experimental 

Surface 
Roughness 

Ra (µm) 

Flatness 
Error 

FE (µm) 

Wire 
breakage 

1 9.79 8.8 3.54 4.75 No 

2 8.57 8.4 3.22 4.01 No 

3 14.5 15.2 - - Yes 

4 12 10.8 - - Yes 

5 3.28 3.5 1.9 1.21 No 

6 7.91 8.05 3.1 3.23 No 

7 11.8 12 - - Yes 

8 7.33 7.25 2.83 2.61 No 

9 2.77 2.5 1.4 0.9 No 
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Fig. 5.23 SEM images of wire surfaces with (a) low ΔVm (b) medium ΔVm  

(c) broken wire tip at high ΔVm (Exp. No. 3) (d) broken wire tip (Exp. No. 4)                

(e) broken wire tip (Exp. No. 7) 

5.3.8 EDS analysis of worn wire surface 

Energy dispersive spectroscopy (EDS) analysis is conducted on the worn wire 

surfaces under the three ΔVm categories considered in earlier section. The 

analysis is performed to understand the weight % of zinc element on the wire 

surface to compare the zinc coating removal leading to wire rupture. Wire rupture 

a) b)

c)

Broken wire tip Broken wire tip

Broken wire tip

d)

e)

Melt pool

Debris 
impinged to 
the surface
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of coated wires is strongly related to the removal of zinc coating exposing the 

inner core to the process heat. Higher the zinc coating removal, greater are the 

chances of wire breakage. The EDS analysis shows a decrease in weight % of 

zinc from low ΔVm to high ΔVm as shown in Fig. 5.24. This is due to the higher 

instability, causing short circuit sparks in the latter case resulting in greater 

removal of surface coating. Once the coating is removed, the wire electrode is 

easily prone to sudden rupture since the unprotected brass core is exposed. 

Therefore, the EDS analysis supports the claim that ΔVm can be an indicator of 

the gap instability and wire break failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.24 EDS analysis of wire surfaces with (a) low ΔVm (b) medium ΔVm  

(c) high ΔVm prediction 

Element Wt. %

Cu 22.62

Zn 48.9

Element Wt. %
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5.4 IN-PROCESS FAILURE PREDICTION 

The earlier section explored the possibilities of using mean gap voltage variation 

as an indicator of machining instabilities to predict wire breakages. This section 

explores the capability to use ΔVm as a process data for in-process failure 

prediction. Here, failure prediction is performed after the process starts unlike the 

earlier ANN and ANFIS models. For such an analysis, certain parameters which 

represents the process stability, have to be extracted during the machining 

process, which can be utilized to draw useful conclusions regarding machining 

health. ΔVm is already reported to be a machining stability indicator for similar 

analysis (Klocke et al., 2014; Abhilash and Chakradhar, 2020). Therefore, in this 

work, the extracted ΔVm value is fed as an input feature along with process 

parameters to a machine learning (ML) classifier model to categorise machining 

outcomes into failure (wire breakage) and non-failure (continuous machining) 

cases. Failure prediction models based on the in-process data can account the 

effects of uncontrollable random factors on the machining process and is 

expected to be more accurate than conventional classifier predictions.  

 

 

 

 

 

 

Fig. 5.25 Method of determining mean gap voltage variation 

Classifier performance  

The methodology of extracting mean gap voltage variation is given in Fig. 5.25. 

The extracted data is fed to an ML classifier along with process parameter values 
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for appropriate failure prediction. Several ML classifiers are considered and 

among them, Kernel based Naive Bayes (KNB) classifier is selected based on 

classification accuracy. The performance comparison of various classifiers is 

given in Table 5.18. KNB classifier is known to outperform other models under 

smaller training dataset conditions. A block diagram representing the steps 

involved in training and prediction of machining failures using KNB model is 

given in Fig. 5.26. 

Table 5.18 Comparison of classifier performances 

S. No. Machine learning classifier technique Accuracy 

1 Logistic regression 87.10% 

2 Linear Support Vector Machine 83.90% 

3 Gaussian Support Vector Machine 80.60% 

4 K-Nearest Neighbour  80.60% 

5 Kernel Naive Bayes 96.70% 

 

 

 

 

 

 

Fig. 5.26 The steps involved in developing a Naive Bayes classification model 

KNB classifier is a probabilistic classifier based on Bayes theorem. Bayes 

theorem computes the probability of occurrence of an incident, based on the 

former knowledge of a condition linked to that incident. KNB is a binomial 

classifier with class labels ‘wire breakage’ and ‘continuous machining’. The 
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training dataset consists of experimental details (input parameters), in process 

data (ΔVm) and corresponding class label. The trained model is observed to have 

a classification accuracy of 96.7 % as evident from the confusion matrix and ROC 

curve shown in Fig. 5.28. 

 

 

 

 

 

Fig. 5.27 Performance evaluation of the model (a) Confusion matrix (b) ROC 

curve 

5.5 SUMMARY  

Predicting the process failures during the machining of wire EDM is difficult due 

to the stochastic process mechanism leading to failure. Additionally, the 

interference of external uncontrollable factors and complex parametric 

interactions can also influence the process failure. ANN classifier is a capable 

soft computing tool to handle such higher order multi dimension relations 

between the parameters and events. A multi-class classifier is developed with the 

class labels being the machining outcomes – ‘spark absence’, ‘normal 

machining’, and ‘wire breakage’. Among these, wire breakage and spark absence 

are considered as machining failures and the normal machining indicates the ideal 

uninterrupted failure free operation. The trained model is successful in predicting 

the machining failures during the wire EDM of Inconel 718 material with 91 % 

accuracy. Confirmation tests reassured the model’s ability to predict the events 

in real world situations. 95 % accuracy is reported during the confirmation tests. 

A detailed analysis on the mechanism of wire rupture is performed by considering 

Class labels 
1 – wire breakage 

0 – continuous 
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SEM images of wire samples corresponding to different wire break prediction 

probabilities.  

A parameter called ‘mean gap voltage variation’ is introduced as a machining 

stability indicator. The parameter is utilized to forecast wire breakage failures. In 

this regard an ANFIS model to predict ΔVm is developed. Limiting value of ΔVm 

is found experimentally, above which the wire breakages occur. This value, 

ΔVm,lim indicates the maximum gap instability the wire electrode can sustain. 

Through 31 experiments based on central composite design of RSM, an ANFIS 

model is trained to predict ΔVm. Additional confirmation tests are conducted to 

test the model accuracy in predicting ΔVm values in real machining situations. 

Based on the predicted ΔVm values, a decision support model is developed which 

intimates the operator regarding the potential wire break situation with good 

accuracy. The capability of the parameter ΔVm to indicate machining stability is 

further proven by conducting wire wear analysis. Low ΔVm showed minor wire 

degradation whereas ΔVm values close to threshold displayed extensive wire 

wear. Additionally, EDS analysis of wire surface is conducted to support the 

claim. Machined surface quality also showed deteriorating trends with increased 

ΔVm. The surface quality is evaluated considering average surface roughness, 

flatness error and SEM images of machined surface under different ΔVm ranges. 

Finally, a binomial classifier (kernel based Naive Bayes classifier) is successfully 

modelled to predict wire break failure.  
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CHAPTER 6 

 

DEVELOPMENT OF SENSOR BASED CONDITION 

MONITORING SYSTEM 

 

6.1 INTRODUCTION  

The chapter describes the development of a condition monitoring system for wire 

EDM process. Firstly, signal acquisition, signal processing and feature extraction 

procedure is described. A pulse classification model is developed to discriminate 

between normal and abnormal discharge pulses. Next, the effect of process 

parameters on discharge characteristics and pulse proportions are analysed. The 

changes in pulse train behaviour and discharge characteristic values at different 

failure situations are studied. The chapter also discusses the effect of extracted 

features on process performance. The effects of unstable machining conditions 

on wire wear and surface morphology of machined components are studied. 

Finally. a heuristic rule-based failure detection model is proposed.  

6.2 EXPERIMENTAL DETAILS 

Experiments are conducted based on Taguchi’s L18 orthogonal array 

experimental design. Input parameters varied are pulse on time, pulse off time, 

servo voltage, wire feed rate, and input current. The input parameters and levels 

are shown in Table 6.1. The process parameters are selected based on their higher 

impact on machining failures. A few parameters are fixed constant due to wire 

EDM limitations and due to lesser impact on performance. The range of 

parameters are selected based on pilot experiments, information from wire EDM 

manual, and literature survey. Input current is selected at only two levels based 

on machine specification constraint. Since the aim of the study is to study the 

process failures, parameter ranges are purposefully selected to induce a few 

failure outcomes. Inconel 718 plate of thickness 10 mm is chosen as workpiece. 

Wire electrode considered is zinc coated brass electrode of 0.25 mm diameter. 
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Dielectric fluid is the deionized water having a conductivity of 20 µS/cm. Straight 

cuts of 50 mm profile length are cut for each experimental run. Responses 

measured are cutting speed and surface roughness. Each run is replicated thrice 

to avoid errors. Matlab 2019a is used for signal processing and further analysis. 

A condition monitoring system is attached to the wire EDM machine to extract 

real time voltage and current data. 

Table 6.1 Process parameters and levels 

Parameters 
Pulse on 

time 
Ton (µs) 

Pulse off 
time 

Toff (µs) 

Servo 
voltage 
SV (V) 

Wire feed 
rate 
WF 

(m/min) 

Input 
current 
Ip (A) 

Level 1 105 30 30 3 10 

Level 2 110 40 40 6 40 

Level 3 115 50 50 9  

 

 

 

 

 

 

 

 

 

Fig. 6.1 Experimental setup for the pulse-train acquisition system 

Condition monitoring setup  

To setup the condition monitoring system for wire EDM, high sampling rate 

current probe and differential probe are required. The current probe chosen is 

Current Probe
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machine

Differential 
Probe
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Current 
Amplifier

PC



 
 

132 
 

Tektronix TCP 303 coupled with a current probe amplifier Tektronix TCPA 300 

having 15 MHz bandwidth and 0 to 150 A measuring range. The voltage probe is 

Tektronix P 5200A with 200 MHz bandwidth and measuring range 0 to                       

± 1300 V. The pulse acquisition and transfer are performed by a mixed domain 

oscilloscope, Tektronix MDO 34-200 with 200 MHz bandwidth and 2.5 GSa/s 

sampling rate per channel. The experimental setup is shown in Fig. 6.1. Signal 

processing, feature extraction, pulse classification and other computations are 

performed by a dedicated windows PC workstation with advanced graphics and 

computational capabilities.  

6.3 PULSE TRAIN ANALYSIS 

The voltage and current signals captured by the sensors are filtered using signal 

analyser toolbox in Matlab. A single capture record length is 20 ms with 250 

million sample per second. The experiments are replicated thrice and each 

extracted feature is the average value of the three measurements. Low pass filter 

is applied to supress higher frequency noises. Further, the relevant features are 

extracted from the filtered signal. A pulse classification algorithm, classifies each 

pulse into normal, arc, short or open pulse. From the pulse classification data, 

proportion of each pulse types in the recorded data can be computed. The 

extracted discharge characteristic features like discharge energy, ignition delay 

time, pulse frequency, and pulse proportions are used to draw useful conclusions 

regarding the machine health state. A future occurrence of wire breakage or spark 

absence can be predicted from the discharge characteristic values. Also, the 

performance characteristics like cutting speed and surface roughness can also be 

predicted from this extracted data. The methodology of pulse train analysis is 

given Fig. 6.2. 

Ignition delay time is regarded as an important pulse characteristic to determine 

machining stability for EDM processes. The parameter indicates whether the 

breaking and restoration of dielectric is taking place ideally in the spark gap. In a 

stable machining condition, the current discharges will be preceded by ignition 

delay duration in the voltage pulse, which is essentially the time taken for 
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ionization of dielectric in the spark gap. A sufficient ignition delay time implies 

proper restoration of dielectric properties after each discharge spark. However, in 

case of debris stagnation or spark gap bridging, the ignition delay time is 

negligible or absent, resulting in arc or short circuit sparks respectively. This is 

due to increased conductivity of dielectric medium in the spark gap due to the 

presence of conductive debris particles. If not addressed, the situation can cause 

repeated short circuit pulse cycles. A pulse train with higher arc or short 

proportion have very high average discharge energy, and pulse frequency. Such 

a situation is regarded as the primary cause of wire breakage. Apart from debris 

stagnation, ignition delay time variation can also occur due to wire lag, deflection 

or vibrations due to the lateral forces acting on the wire due to dielectric flushing 

pressure, electrostatic forces, discharge spark force, etc.  

 

 

 

 

 

Fig. 6.2 Methodology of pulse train analysis 

 

6.4 PULSE CLASSIFICATION AND CHARACTERISATION 

The ideal machining condition in wire EDM involves breaking and restoration of 

dielectric properties in the spark gap. As discussed in the previous section, under 

stable machining condition, current discharge occurs after an ignition delay 

period. Such ideal discharge pulses, along with typical discharge characteristics 

are shown in Fig. 6.3. Material removal occurs during the pulse on time. Pulse 

off time, follows the pulse on time to clear the debris from spark gap and to cool 

the workpiece. Open circuit voltage is the initial voltage applied across the 
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electrodes. Once the dielectric barrier is breached, the voltage drops during the 

spark discharge, which called discharge voltage. 

 

 

 

 

 

 

Fig. 6.3 Typical voltage and current pulse shape for a normal discharge 

 

 

 

 

 

Fig. 6.4 (a) Normal discharge (b) Open circuit discharge 

During the pulse train analysis, different types of discharge pulses are identified 

apart from the normal spark discharges. They are open circuit pulses, arc 

discharges and short circuit discharges. Each pulse types are distinguishable from 

one another by the ignition delay duration. Open circuit sparks are characterized 

by longer than ideal ignition delay time. If the pulse cycle is predominated by 
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open circuit sparks, then the overall productivity of the machining process comes 

down. After a limit, excessive open sparks can lead to spark absence failure, 

where the machining halts due to zero or negligible spark frequency. Open circuit 

sparks happens when the voltage applied across the electrodes is not sufficient 

enough to break the dielectric barrier. This happens due to excessive spark gap 

distance or lesser than ideal open circuit voltage. Fig 6.4 compares the open 

circuit sparks with normal spark discharges. 

 

 

 

 

 

Fig. 6.5 (a) Arc discharge (b) Short circuit discharge 

Arcing happens when a fraction of debris is left behind in the spark gap at the end 

of pulse off time. Suspended debris in the dielectric increases the conductivity of 

spark gap region resulting in lower than usual ignition delay time. Arc sparks are 

characterised by negligible ignition delay time. In this case, as soon as the voltage 

pulse reaches the open circuit voltage, the channel becomes conductive and a 

discharge spark is initiated. Fig. 6.5 (a) shows pulse cycle having a series of arc 

sparks. Arcing can improve the productivity of the process but can affect 

machined surface integrity adversely. Often higher proportion of arc sparks cause 

surface damages. Increasing the spark gap, pulse off time, and dielectric pressure 

can restore the machining stability in case arcing is detected early.  
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Fig. 6.6 Pulse classification algorithm 

Short circuit sparks are extreme cases of arc sparks. If the debris stagnation due 

to ineffective flushing builds up, a stage will be reached, when the entire inter 

electrode distance is bridged by debris. This causes series of short circuit sparks, 

when the voltage is applied across the electrodes. In such cases, as soon as the 

voltage is applied, a discharge spark occurs due to physical contact between the 

electrodes. Here the voltage pulse does not reach the peak value, contrary to the 

previous cases. A short circuit spark is shown in Fig. 6.5 (b).  

6.5 PULSE CLASSIFICATION ALGORITHM 

The current study proposes a pulse classification algorithm based on ignition 

delay time. The threshold values of the algorithm are found heuristically based 

on experimental study and pulse train analysis. The algorithm is shown in           

Fig. 6.6. A pulse counter counts the total number of discharge pulses. In the 

absence of an ignition delay time, the pulse is categorised as short circuit pulse. 
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In case of ideal ignition delay duration (from 8 μs to 160 μs), the pulse is 

categorised as normal spark discharge. If the ignition delay time is less than 8 μs, 

then the pulse is arc spark. Finally, if the discharge spark is absent even after                

160 μs, then the pulse is categorised as open circuit spark.  

The classifier performance is evaluated by considering pulse cycles of different 

record lengths, and the developed pulse classifier is observed to perform 

accurately in each case. Fig. 6.7 demonstrates the pulse classification results for 

a pulse sample size of 5 ms.  

 

 

 

 

Fig. 6.7 Results of pulse classification on a 2 ms wire EDM pulse data 

6.6 EFFECT OF INPUT PARAMETERS ON PULSE 

CHARACTERISTICS 

To analyse the effect of input parameters on the discharge characteristics and 

pulse proportions, one factor at a time experiments are conducted. Pulse on time, 

pulse off time and servo voltage are varied at five levels in this regard. Effect of 

each parameter is discussed in this section. 

Since the discharge energy is proportional to pulse on time, number of debris 

produced can reach unideal levels at higher pulse on time values. For a fixed 

spark gap and pulse off time, there is a limit up to which the debris produced can 

be flushed away effectively. If the debris are increased progressively, by 

increasing pulse on time, after a limit, debris will start to accumulate creating 

short circuit sparks. This is why, the pulse cycle changes from normal spark 

dominant at lower discharge energies, to short circuit dominant at higher 
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energies. This effect is shown in Fig. 6.8. Spark ratios are computed as the ratio 

of the number of a particular pulse to total number of discharge pulse.  

  

 

 

 

 

 

 

 

Fig. 6.8 Effect of pulse on time on discharge energy and pulse proportions 

Fig. 6.9 shows the effect of servo voltage on the discharge characteristics. Servo 

voltage is the reference voltage based on which the inter electrode gap is 

maintained. Larger the servo voltage, greater is the spark gap distance. Increasing 

the spark gap prolongs the ionization of discharge channel and subsequent 

dielectric breakdown. If the spark gap is increased beyond a limit, dielectric 

breakdown is not achieved during pulse on time resulting in open circuit sparks. 

Open circuit pulses are called misdischarges since current discharge is absent and 

thus higher open circuit pulse proportion implies a reduced spark frequency. This 

is shown in Fig. 6.9 (a) and Fig. 6.9 (b). When all other parameters are fixed, 

decreasing the servo voltage narrows the spark gap, which after a limit results in 

debris stagnation due to incomplete flushing. This is the reason why the short 

circuit ratio is observed to increase at lower servo voltages as shown in                       

Fig. 6.9 (c).  

b) 

a) 

c) 
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Fig. 6.9 Effect of servo voltage on spark frequency and pulse proportions 

 

 

 

 

 

 

Fig. 6.10 Effect of pulse off time on short circuit spark ratio and spark 

frequency 

Pulse off time has a similar effect to that of servo voltage on discharge 

characteristics. Lower pulse off time implies lesser time for dielectric flushing. 

c) 

a) 

b) 

a) 

b) 
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Thus, at lower pulse off times, chances of debris stagnation are greater, resulting 

in higher proportion of short circuit sparks. Short circuit sparks happen at higher 

frequency due to direct pulse discharge by physical contact. Both these effects 

are shown in Fig. 6.10.  

The effects discussed so far are in controlled environment where only the 

parameter under consideration is varied keeping all others constant. However, in 

actual situations the parameter interactions can result in unexpected outcomes 

which can be different from what has been discussed so far. This is the reason 

why statistical models relating input parameters and process responses are 

regarded as less accurate. A condition monitoring system which relates discharge 

features to the process outcome and response is extremely significant in this 

regard. Such a system can address the complex process interactions and stochastic 

material removal mechanism more accurately.  

6.7 EFFECTS OF DISCHARGE CHARACTERISTICS ON PROCESS 

PERFORMANCE 

To study the effects of extracted features on the process responses, 18 

experiments are conducted, the details of which are given in Table 6.2. Discharge 

energy has a significant effect on the productivity and surface quality of wire 

electric discharge machined parts. It is understood from the mechanism of 

material removal that discharge energy of individual sparks is proportional to the 

individual crater size formed on the workpiece. Cumulative effect of many such 

craters contribute to the material removal during the spark discharges. Larger the 

crater dimension, higher will be the material removal rate. This effect of 

discharge energy on cutting speed is shown in Fig. 6.11 (a). Additionally, crater 

sizes also dictate the roughness of the resulting machined surface. Average 

surface roughness is computed with regard to the deviations of the machined 

surface from a mean line. Deeper craters cause greater deviations and hence 

rougher would be the surface which is evident from Fig. 6.11 (b).  
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Table 6.2 Extracted discharge features and recorded responses 

 

 

 

 

 

Fig. 6.11 Effect of discharge energy on (a) cutting rate (b) Surface roughness 

S. 
No. 

DE 
(µJ)  

SF  
X100 
(Hz) 

NSR OSR ASR SSR 
CS 

(mm/
min) 

Ra 

(µm) 
MO 

 

1 538 552 0.36 0 0.35 0.29 1.09 2.12 WB  

2 507 298 0.47 0 0.26 0.27 1.04 2.05 NM  

3 540 124 0.58 0.05 0.15 0.22 0.38 1.82 NM  

4 951 204 0.47 0 0.19 0.34 1.35 2.28 WB  

5 1014 116 0.58 0.04 0.13 0.25 0.91 2.37 NM  

6 1003 66 0.4 0.26 0.09 0.25 0.93 2.16 NM  

7 1496 174 0.5 0.01 0.13 0.36 1.8 3.01 WB  

8 1540 82 0.51 0.16 0.09 0.24 0.82 2.92 NM  

9 1520 131 0.49 0.01 0.2 0.3 1.24 2.95 WB  

10 47 269 0.43 0.02 0.34 0.21 0.2 0.71 NM  

11 29 414 0.35 0 0.43 0.22 0.24 0.67 NM  

12 48 174 0.61 0.01 0.19 0.19 0.11 0.57 NM  

13 29 183 0.53 0 0.27 0.2 0.13 0.59 NM  

14 26 74 0.53 0.21 0.16 0.1 0.03 0.52 SA  

15 27 8.5 0.17 0.41 0.24 0.18 0.1 0.66 SA  

16 31 8 0.29 0.38 0.19 0.14 0.06 0.61 SA  

17 32 9.5 0.22 0.39 0.21 0.18 0.09 0.79 NM  

18 33 4.5 0.17 0.64 0.11 0.08 0.01 0.72 SA  

DE= Discharge energy, SF= Spark frequency NSR= Normal spark ratio, 
OSR= Open spark ratio, ASR= Arc spark ratio, SSR= Short spark ratio, 
CS= Cutting speed, Ra= Average surface roughness, MO = Machining 
outcome, WB = Wire breakage, NM= Normal machining, SA= Spark 

absence 
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Fig. 6.12 Effect of short circuit sparks on surface roughness 

In addition to the typical material removal mechanism, at higher discharge 

energies, the effect of short circuit pulses also contributes to the higher material 

removal and average surface roughness. The short circuit pulses are regarded as 

undesirable because of its higher intensity and can lead to severe surface 

damages. The effect of short spark ratio on surface roughness is shown in                  

Fig. 6.12. 

6.8 PULSE CYCLE BEHAVIOUR DURING PROCESS FAILURES 

Pulse train patterns during machining failures are compared with its typical 

behaviour in this section. Several distinct pulse characteristics are observed in 

voltage and current signals, leading to process failures. Based on such 

observations, the features to be extracted (machine health indicators) are selected. 

Unstable pulse cycle before wire breakage failure, is observed to have several 

series of short circuit discharges as seen in Fig. 6.13. Secondly, the discharge 

intensities are relatively higher than the normal spark discharges. Also, the spark 

frequencies are observed to be several times greater than the ideal cycle. The short 

circuit sparks happen spontaneously at the application of voltage across the 

electrodes by physical contact through gap bridging phenomena. Wire electrodes 
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erode faster due to these short discharges, rapidly melting and vaporising the zinc

coating. The unprotected inner brass core is more prone to damages due to its 

direct exposure to thermal shocks. Higher spark frequency increases possibilities 

of multiple sparks from the same wire spot, which further intensifies the 

degradation. As the wire wear continues, at a limiting point, the wire electrode 

will be no longer able to withstand the axial tension. Wire elongates at the point 

of maximum wire wear, which will eventually lead to wire rupture.   

 

 

 

 

 

Fig. 6.13 The pulse cycle behaviour before wire breakage 

 

 

 

 

 

 

Fig. 6.14 The pulse cycle behaviour before process interruption due to spark 

absence 

Open circuit region

Arcing Arcing Arcing
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The pulse cycle leading to spark absence, in contrary to earlier case, has very little 

number of discharge pulses. The pulse cycle is dominated by open circuit pulses 

with long ignition delay time, which affects the productivity and process 

efficiency. Sparks dies out with negligible discharge frequency as shown in          

Fig. 6.14.  

 

 

 

 

 

 

Fig. 6.15 (a) Discharge energy at various machining conditions  

(b) Spark frequency at various machining conditions 

From the analysis of pulse cycles, the discharge features – spark frequency, 

discharge energy, and abnormal pulse proportions, are observed to exhibit 

distinguishable characteristics ahead of process failures. The average discharge 

energy and spark frequency comparison during failure and ideal cases are shown 

in Fig. 6.15. Discharge energy per spark and spark frequency is maximum for 

wire breakage case, intermediate for normal machining, and least for spark 

absence. Based on these conclusions, a failure prediction algorithm is developed, 

the details of which are discussed in Section 6.10.  
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6.9 PREDICTIVE MODELLING OF PERFORMANCE 

CHARACTERISTICS 

A neural network model is trained to predict cutting speed and surface roughness 

during wire EDM of Inconel 718. A feed forward back propagation algorithm is 

selected for the current predictive model. The input dataset consists of five input 

parameters (pulse on time, pulse off time, servo voltage, wire feed and input 

current), and two extracted discharge features (discharge energy, and spark 

frequency). The optimal ANN structure is found to be 7-10-2, based on maximum 

model accuracy. The ANN structure is showed in Fig. 6.16. During the training 

phase, the weights and biases of ANN structure are tuned to minimize the loss 

function. The trained model is having high accuracy with a correlation coefficient 

(R value) of 0.98. The regression plot of the trained model is given in Fig. 6.17. 

In order to test the model performance in actual machining conditions, 14 

confirmation experiments are conducted. The model predictions are observed to 

be in close agreement to experimental values. Additional details on the 

confirmation tests are given in the next section. 

 

 

 

 

Fig. 6.16 ANN structure 
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Fig. 6.17 Regression plot for the trained ANN model 

6.10  INTELLIGENT MACHINE FAILURE CONDITION PREDICTION 

SYSTEM 

A heuristic rule-based failure detection algorithm is presented in this section. 

Based on the pulse train analysis, it is revealed that abnormal pulse proportions, 

discharge energy, and pulse frequency are the relevant health indicators for wire 

EDM process. The algorithm is based on multiple rules to categorise the 

machining condition into wire breakage, spark absence, or normal continuous 

machining. A high proportion of spark and arc pulses is an indicator of machining 

instability leading to wire breakage.  

The threshold values are decided heuristically after performing a number of 

experiments that resulted in machining failures. Among all cases of wire 

breakages, the minimum values of undesirable spark ratios, discharge energy and 

spark frequency are denoted as (ASR+SSR)wb,min, (DE)wb,min, and (SF)wb,min. The 
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threshold limits for discharge characteristics are based on these minimum values 

above which a wire breakage failure is expected. Several failure case experiments 

are conducted and the discharge characteristics leading to wire break failures are 

extracted in order to fine tune these threshold values. Also since crossing the 

threshold of either one or two parameters does not necessarily result in wire 

breakage, AND condition is set for the rule based prediction. Thus the event is 

predicted as wire breakage only when all the three cases are satisfied. Therefore, 

higher proportion of abnormal pulses, coupled with high spark frequency and 

discharge energy is considered in this algorithm as a necessary condition to 

accurately predict wire breakage. Similarly, high proportion of open circuit 

discharges, coupled with low discharge energy and low sparking frequency is 

observed to result in spark absence. In such situations, the open circuit voltage 

applied across the electrodes are not sufficient enough to break the dielectric 

barrier. In case neither of these conditions are predicted, the machining is 

categorised as normal continuous machining. Flowchart of the proposed failure 

detection algorithm is given in Fig. 6.18.  

 

 

 

 

 

 

 

Fig. 6.18 Flowchart for intelligent machine condition prediction system 
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Additional confirmation tests are conducted to test the models’ performance in 

actual machining situations. The parameter combinations and extracted features 

are given in Table 6.3. Based on these features, process responses and failure 

mode are predicted by ANN prediction model and failure prediction algorithm 

respectively. The details of model predictions and comparison with experimental 

readings are given in Table 6.4. Both the ANN model and proposed algorithm is  

observed to be accurate in their predictions.  

Table 6.3 Results of confirmation experiments 

S. 
No. 

Ip 

(A) 
Ton 

(µs) 
Toff 

(µs) 
SV 
(V) 

WF 
(m/min) 

Spark 
ν (Hz) 

DE/spark 
(µJ) 

NSR OSR ASR SSR 

1 40 114 40 31 7 3450 1732.99 0.58 0.04 0.13 0.25 

2 40 107 30 35 4 39050 667.74 0.34 0.05 0.32 0.29 

3 10 106 46 50 3 950 29.55 0.21 0.67 0.02 0.09 

4 40 112 33 40 3 25550 848.58 0.56 0.05 0.17 0.22 

5 10 105 47 49 3 850 33.38 0.13 0.70 0.09 0.08 

6 10 110 40 48 3 950 10.56 0.16 0.66 0.03 0.15 

7 40 113 32 30 4 1495 935.02 0.49 0.01 0.14 0.36 

8 40 115 30 30 5 3150 1002.09 0.44 0.03 0.26 0.27 

9 40 108 31 32 5 30150 778.22 0.53 0.16 0.07 0.24 

10 10 108 38 50 4 450 15.32 0.24 0.54 0.09 0.12 

11 10 106 43 48 7 800 50.08 0.21 0.58 0.03 0.18 

12 40 109 38 31 6 26150 1227.46 0.45 0.04 0.17 0.34 

13 40 115 35 35 3 13350 501.21 0.31 0.16 0.28 0.25 

14 10 105 40 35 3 40150 29.11 0.37 0.23 0.20 0.20 

6.11  EFFECT OF ABNORMAL PULSES ON MICROSTRUCTURE 

The effect of discharge characteristics on surface integrity is discussed in this 

section. SEM images of machined surfaces with 36 % short circuit sparks       

(Exp. No. 7) and 20 % sort circuit sparks (Exp. No. 14) are considered for 

comparison. The 16 % reduction in short circuit sparks have resulted in surface 

morphology improvement as seen in Fig. 6.19. Higher short circuit sparks have 

led to numerous undesirable surface features like micro globules, micro pits, and 

porosity. These surface features can reduce the load bearing capacity of machined 

components especially at high temperatures. Reduction in abnormal spark ratio 

has led to significant smoothening of machined surface with no visible micro 
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features. Higher short circuit sparks have also led to significantly higher wire 

wear as evident from Fig. 6.20. At higher proportion of short circuit sparks, zinc 

coating is severely damaged or removed with a number of debris impinged to the 

wire surface. Zinc coating removal can expose the unprotected inner brass core 

to thermal shocks leaving the wire electrode susceptible to breakage. If the 

proportion of short sparks are increased further, wire breakages are observed. The 

machining condition is more stable in the second case with only marginal visible 

wire wear.  

Table 6.4 Performance comparison of predictive models 

S. 
No. 

Exp. 
CS 

(mm/min) 

Exp. 
Ra 

(µm) 

ANN 
CS 

(mm/min) 

ANN 
Ra 

(µm) 

CS 
% 

dev 

Ra  
% 

dev 

Failure 
condition 

– Exp. 

Failure 
condition 
- Model 

1 1.28 3.21 1.35 3.38 0.06 0.05 NM NM 

2 1.41 2.42 1.35 2.51 0.04 0.04 WB WB 

3 0.01 0.68 0.01 0.58 0.10 0.14 SA SA 

4 1.72 2.36 1.82 2.41 0.06 0.02 NM NM 

5 0.08 0.77 0.10 0.62 0.29 0.20 SA SA 

6 0.21 0.71 0.20 0.69 0.07 0.03 SA SA 

7 1.87 2.59 2.02 2.51 0.08 0.03 WB WB 

8 2.01 2.65 1.92 2.71 0.05 0.02 NM NM 

9 1.35 2.29 1.39 2.49 0.03 0.09 NM NM 

10 0.06 0.75 0.05 0.69 0.14 0.08 SA SA 

11 0.21 0.61 0.21 0.50 0.02 0.17 SA SA 

12 1.59 2.47 1.62 2.39 0.02 0.03 WB WB 

13 1.48 1.99 1.52 2.17 0.03 0.09 WB WB 

14 0.32 0.81 0.33 0.78 0.05 0.04 NM NM 

 

 

 

 

 

 

Fig. 6.19 Microstructural comparison of machined surfaces when short spark 

ratio is reduced by 16 % 

 

b)a) Micro globules
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Fig. 6.20 Microstructural comparison of worn wire surfaces when short spark 

ratio is reduced by 16 % 

6.12 SUMMARY 

The chapter dealt with the setting up of a condition monitoring system for wire 

EDM process. A pulse classification system, based on ignition delay time is 

developed. Various discharge characteristics are extracted from the filtered 

voltage and current signals. The effect of discharge characteristics on process 

failures like wire breakage and spark absence are investigated. The study also 

analysed the variations in pulse cycle leading to failures. A neural network 

prediction model is developed to predict the process responses accurately based 

on input parameters and discharge characteristics. Finally, a failure detection 

algorithm is developed to forecast the events of machining failures based on 

abnormal pulse proportions, discharge energy, and spark frequency. The effect of 

short circuit sparks on surface integrity and wire wear are studied by comparing 

SEM images.     
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CHAPTER 7 

FAILURE DETECTION AND PROCESS CONTROL  

 

7.1 INTRODUCTION  

The chapter deals with the development of failure detection and process control 

algorithm based on pulse train analysis. Initially, a heuristic rule-based failure 

detection and process control method is proposed. The process failure and 

severity are predicted based on extracted signal features like pulse proportions, 

pulse frequency and discharge energy. Then based on the severity of instability, 

the control algorithm recommends retuning of parameter settings to regain the 

process stability. Further, instead of heuristic method, a neural network classifier-

based failure prediction model is proposed. In this model, severity is assessed 

based on remaining useful life (RUL) prediction. Through process control, 

machining interruptions through wire breakage and spark absence is avoided, and 

surface integrity of machined components are improved.  

7.2 EXPERIMENTAL DETAILS  

Inconel 718 plate of thickness 10 mm is chosen as the work material. Wire 

electrode is hard zinc coated brass wire of 0.25 mm diameter. Deionized water of 

conductivity 20 µS/cm is selected as dielectric fluid. Profile machined is a straight 

cut of 50 mm length. The process parameters varied to develop the algorithm and 

train the machine learning models are given in Table 7.1. The parameter ranges 

and levels are selected based on pilot experiments, wire EDM manual, and 

literature survey. Input current and wire feed rate is selected at two levels due to 

machine specification restrictions and lesser impact on process failure 

respectively. A few parameter combinations are purposely selected to cause 

machining failure to analyse its cause and effect. A few other parameters given 

in Table 7.2 are kept constant due to machine limitations and relatively lower 

effect on the process failures. The condition monitoring system consisting of 
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Tektronix made current probe (TCP 303), amplifier (TCP A300), differential 

probe (P 5200A) and acquisition system (MDO 34 200) is set up as shown in               

Fig. 7.1. Pulse classification, feature extraction and modelling are performed 

using Matlab 2019a software. Filtering of raw waveform is performed by 

SignalAnalyzer toolbox. Neural network toolbox is used to develop classification 

and prediction models.  

Table 7.1 Process parameters and levels 

Process parameters Symbol Level 1 Level 2 Level 3 

Pulse on Time (µs) TON 115 110 105 

Pulse off Time (µs) TOFF 50 40 30 

Servo voltage (V) SV 50 40 30 

Wire feed rate (m/min) WF 9 3  

Input Current (A) IP 40 10  

Table 7.2 Parameters maintained constant 

Parameter Value 

Wire electrode diameter 250 μm 

Open circuit voltage 12 V 

Dielectric fluid pressure 1.9 x 105 N 

Axial wire tension 10 N 

7.3 SIGNAL PROCESSING AND PULSE CLASSIFICATION 

Low pass filter is applied to the raw signals to avoid the high frequency noisy 

data. The health indicators are extracted from the filtered data. Based on the 

results from the previous chapter, features extracted from the pulse data are 

abnormal pulse proportion, discharge energy, and discharge frequency. A pulse 

classification algorithm, the details of which are discussed in the previous 

chapter, categorises the pulses into normal spark pulse, arc sparks, open circuit 

sparks, and short circuit sparks. Pulse classification is performed based on 

ignition delay time. Normal pulses are the ideal pulses where a discharge happens 

following an ignition delay time for ionization and dielectric breakage. Discharge 

pulses associated with zero ignition delay time are regarded as spark discharges 
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and the ones with negligible ignition delay time are called arc pulses. Both of 

these are considered as abnormal pulses since they lead to wire breakage failure 

and surface damages. The open circuit pulses are associated with a long ignition 

delay time, or absence of discharge pulses. Such pulses affect the productivity 

and efficiency of machining process. Pulse proportions are computed as the ratio 

of number of individual pulses to the total number of pulses.  

 

 

 

 

 

 

 

Fig. 7.1 Wire EDM condition monitoring setup 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.2 Process control strategy 
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The proposed algorithms detect the potential failure situations based on the 

extracted discharge features and pulse proportions. Also, a failure severity 

assessment is performed, based on which the control algorithm revises the 

process parameters by adjusting pulse off time, servo voltage and pulse on time. 

The overall process control strategy is given in Fig. 7.2.  

7.4 RULE BASED MODEL FOR FAILURE DETECTION 

Two types of machining failures are considered in this study, wire breakage and 

spark absence. To identify the potential failures during the process, detailed pulse 

train analysis is performed. The pulse train analysis revealed different types of 

discharge pulses as shown in Fig. 7.3. The variations in wire EDM pulse cycles 

leading to wire breakage and spark absence are also studied. A wire breakage 

event is preceded by a series of short circuit sparks, which increases the average 

discharge energy of sparks and spark frequency of pulse cycle. A typical pulse 

cycle leading to wire breakage is given in Fig. 7.4. Debris accumulation and spark 

gap bridging are regarded as the main reasons for wire breakage. Spark absence, 

on the other hand, is indicated by long open circuit regions. The situation is less 

critical than wire breakage since it does not cause breakages or surface damages. 

But spark absence severely effects process efficiency and productivity due to 

process interruptions and shall be avoided. Extremely low discharge frequency, 

and low discharge energy per sparks are the characteristics before spark absence. 

The pulse cycle leading to spark absence is given in Fig. 7.5. 

The steps involved in rule-based failure detection and process control system is 

given below 

• Step 1 – Failure prediction: The failure prediction is based on abnormal 

spark ratio and spark frequency, based on the discharge characteristics 

observed before machining failures. The pulse cycle leading to wire breakage 

is observed to be dominated by short circuit and arc sparks. Also, the spark 

frequencies in such cases are high due to ignition delay free discharges. Thus, 

if the ratio of arc and short pulses combined are high, with pulse cycle 
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exhibiting high pulse frequency, then wire breakage is predicted. On the other 

hand, spark absence is indicated by a higher than normal (< 20%) open circuit 

voltages, combined with very low spark frequency and spark discharge 

energy. Table 7.3 and Table 7.4 shows a few conditions of wire breakage and 

spark absence respectively.  

 

 

 

 

 

 

Fig. 7.3 Types of discharge pulses observed from the pulse chain 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 The pulse cycle behaviour leading to wire breakage failure 

• Step 2 – Assessment of failure severity: The severity of predicted wire 

breakage failure is judged based on the discharge energy per spark. The 

parameter is selected since discharge energy of individual sparks is directly 

related to the extent of wire wear. A higher intensity spark is expected to cause 

a deeper crater on the wire surface, thus causing faster wire degradation, 
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eventually leading to wire rupture. The algorithm categorises the discharge 

energies into three, for potential wire break machining conditions, based on 

which the wire break severity is classified as high, medium, and low critical 

cases.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.5 The pulse cycle behaviour leading to spark absence failure 

• Step 3 – Process control: From the mechanism of material removal and 

process failures, a process control methodology is devised. Since the root 

cause of wire breakage is debris accumulation and spark gap bridging, 

measures are taken to improve the flushability of accumulated debris. For 

this, pulse off time and servo voltage was increased based on severity. To 

regulate the high severity condition, discharge energy is also controlled by 

reducing pulse on time, in addition to the other parameters. To avoid spark 

absence, the algorithm adjusts discharge energy and spark gap. 

Threshold values of all the rules are fixed based on the experimental observations. 

The overall failure prediction and process control methodology is given as a 

flowchart in Fig. 7.6. 
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Fig. 7.6 Flowchart of failure detection and control method 

Table 7.3 Extracted discharge characteristics leading to wire break failure 

S. 
No 

Input parameters 

1 

Extracted signal features 

Observed 
failure 

Pulse 
on 

time 
(μs) 

Pulse 
off 

time 
(μs) 

Servo 
voltage 

(V) 

Input 
current 

(A) 

SSR  
+  

ASR 

Spark 
ν (Hz) 

Discharge 
energy 

(μJ) 

1 105 30 30 40 

 

0.84 75000 613.68 

Wire 
breakage 

2 110 30 30 40 0.43 26500 1044.30 

3 110 30 50 40 0.44 45000 1066.32 

4 110 40 50 40 0.53 29000 986.55 

5 110 50 50 40 0.54 20500 1002.03 

6 115 30 30 40  0.59 22500 1476.84 

7 115 40 30 40  0.75 25500 1484.71 

ASR- Arc spark ratio, SSR- Short spark ratio 
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Table 7.4 Extracted discharge characteristics leading to spark absence failure 

S. 
No 

Input parameters 

1 

Extracted signal features 

Observed 
failure 

Pulse 
on 

time 
(μs) 

Pulse 
off 

time 
(μs) 

Servo 
voltage 

(V) 

Input 
current 

(A) 

Open 
spark 
ratio 

Spark 
ν (Hz) 

Discharge 
energy 

(μJ) 

1 105 40 50 10 

 

0.58 12000 47.62 

Spark 
absence 

2 105 50 30 10 0.31 13500 32.06 
3 105 50 50 10 0.44 19500 42.60 
4 110 50 50 10 0.45 14500 42.55 
5 115 50 50 10 0.48 15500 65.58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.7 Average values of pulse characteristics at different machining 
conditions 

The comparison of discharge characteristics extracted from pulse cycles before 

various machining outcomes are given in Fig. 7.7. Discharge energy of discharge 

sparks are observed to be higher than ideal before wire breakages. This is due to 

the higher intensity short circuit sparks which dominate the pulse cycle during 

unstable machining conditions leading to wire breakage. On the contrary, average 

Machining Condition 

WB Wire breakage 

CM Continuous machining 

ark ab
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discharge energy is observed to be lower than ideal before spark absence failure. 

Spark frequency was also found to increase before wire breakage due to spark 

gap bridging. The pulse cycle leading to spark absence, however, is observed to 

have lesser than ideal spark frequency. Regarding abnormal spark proportions, 

the short circuit and arc sparks are higher before wire breakage and lower before 

spark absence. Similarly, open circuit sparks are higher leading to spark absence 

and lower for wire breakage. 

Effects of process control 

To demonstrate the effects of process control, discharge characteristic 

comparison of six cases of machining failures are listed in Table 7.5. With the 

initial parameter settings, first four cases have led to wire breakage, and the last 

two resulted in spark absence. The failure situations are rightly predicted, based 

on the process control algorithm. Then the severity is assessed, based on which 

the parameter settings are retuned for each case to restore the machining stability. 

The recommended parameter settings by the process control algorithm are 

successful in overcoming the machining failures and it ensured a continuous 

uninterrupted machining.  

For the cases where wire breakage is predicted, high discharge energy, spark 

frequency, and proportion of abnormal sparks are brought back to normal levels 

by the process control algorithm. The control algorithm reduces the debris 

production by bringing down the pulse on time. Also, it reduces the debris 

accumulation by increasing the pulse off time and inter electrode distance. The 

parameters and the degree of parameter revision are based on the severity 

assessment. By revising the parameters, the debris accumulation is avoided, the 

effectiveness of flushing is restored, and thus process stability is established.  For 

the case of spark absence, process regulation involves increasing the pulse on 

time and reducing the spark gap. By doing so, time for ionization and dielectric 

breakage is increased. Simultaneously, by reducing the spark gap, dielectric 

barrier is reduced. Thus, the revised situation promotes a stable and continuous 

operation by avoiding open circuit sparks. A comparison of pulse waveform 
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before and after process control is given in Fig. 7.8 for the case of wire breakage.  

It can be seen that the long chain of short circuit sparks is replaced by continuous 

normal spark discharges. Similarly, Fig. 7.9 shows the controlled pulse cycle for 

spark absence case. Open circuit pulses are replaced by normal sparks.  

Table 7.5 Comparison of machining outcomes before and after process control 

S. 
No 

Condition 

Input parameters 

1 

 
Extracted signal 

features 

MO 
Ra 

(μm) TON 
(μs) 

TOFF 
(μs) 

SV 
(V) 

IP 
(A) 

ASR 
+ 

SSR 
OSR 

SF 
(Hz) 

DE 
(μJ) 

1 

Initial 113 30 35 40 0.97 0 84600 1569 WB 3.47 

Controlled 108 40 55 40 0.08 0.08 9650 433 CM 2.37 

2 

Initial 115 32 33 40 0.92 0.01 61200 1705 WB 3.31 

Controlled 110 42 43 40 0.10 0.24 7600 503 CM 2.43 

3 

Initial 110 33 31 40 0.79 0.01 21350 990 WB 3.12 

Controlled 110 38 36 40 0.18 0.18 7700 87 CM 2.29 

4 

Initial 112 30 30 40 0.83 0 62500 559 WB 3.37 

Controlled 112 35 30 40 0.23 0.21 7450 102 CM 1.96 

5 

Initial 105 50 48 10 0.17 0.5 300 59 SA - 

Controlled 110 50 38 10 0.24 0.01 3215 24 CM 0.96 

6 

Initial 107 45 50 10 0.36 0.64 550 49 SA - 

Controlled 112 45 40 10 0.26 0 3015 27 CM 0.83 

WB – Wire breakage, CM- Continuous machining, ASR- Arc spark ratio, 
SSR- Short spark ratio, OSR- Open spark ratio, SF – Spark frequency, 

DE – Discharge energy, MO – Machining outcome 
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Fig. 7.8 Discharge pulse waveform (a) leading to wire breakage (b) after 

parameter tuning based on the control algorithm 

 

 

 

 

 

 

 

 

Fig. 7.9 Discharge pulse waveform (a) leading to spark absence (b) after 

parameter tuning based on the control algorithm 

Restoration of machining stability by the proposed algorithm, is also analysed 

from wire wear point of view. Fig. 7.10 shows the comparison of wire wear by 

analysing the SEM images of worn wires before and after process control. 

Severely worn wire surface is observed when machined with original parameter 

settings corresponding to Exp. No. 1 of Table 7.5. The zinc coating is completely 

degraded in patches, with several debris particles impinged on the wire surface 

as seen in Fig. 7.10 (a). This indicates debris stagnation and a short circuit 

dominated pulse train. If the machining conditions are not regulated, the wire 

degradation will worsen further, leading to wire rupture. Wire tip image of 

a)  b) 

a)  b) 
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ruptured wire electrode is shown in Fig. 7.10 (b). Debris impingement is still 

visible in this case. Wire electrode surface obtained after revising the process 

parameters is showed in Fig. 7.10 (c). A substantial reduction in wire wear is 

observed compared to the original settings. The wire electrode is only marginally 

eroded with zinc coating still intact. The coating protects the wire from thermal 

shocks by ‘heat sink effect’ thus preventing sudden rupture. Thus, the machining 

stability is found to be restored by the proposed algorithm, thus preventing the 

wire break failure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.10 (a) Worn wire surface leading to wire breakage (b) broken wire tip 

(b) worn wire after process control 

 

Apart from ensuring a continuous machining, the control algorithm is also 

observed to improve the surface morphology and surface finish of the machined 

surfaces. Firstly, SEM images of the machined surfaces are compared to perform 

microstructural analysis as shown in Fig. 7.11. The machined surface under 

unstable conditions corresponding to original parameter settings of Exp. No. 1 is 

compared against the controlled settings in this regard. Machined surface under 

a) b)

c)

Debris

Partially removed 
wire coating

Debris

Melt pool

Broken wire tip

Minimal wire wear
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original settings is observed to have numerous micro features like micro globules, 

voids and porosity (Fig. 7.11 (a)). Such surfaces are unrecommended for several 

applications, especially in aerospace components due to its susceptibility to 

fatigue failure. The improved process conditions resulted in a smoother surface 

with no visible micro features (Fig. 7.11 (b)).  

 

 

 

 

 

 

 

Fig. 7.11 SEM image of machined surface (a) under original settings (b) after 

process control 

 

 

 

 

 

 

 

 

 

Fig. 7.12 Non-contact 3D profilometer image of machined surface (a) under 

original settings (b) after process control 

Secondly, non-contact 3D profilometer images are compared to understand 

morphological improvements. A coarse surface is observed with high peaks and 

deep valleys under original settings (Fig. 7.12 (a)). This is due to larger craters 

b)a)

Micro voids

Porosity

Micro globules
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and surface damages caused by short circuit sparks. However, after process 

control, the machined surface is much smoother with shallow peaks and valleys 

(Fig. 7.12 (b)). Reduction of abnormal sparks and an improvement in flushing 

conditions resulted in better machined surface. A bar chart showing the effect of 

discharge energy on surface roughness, as given in Fig. 7.13, supports the idea 

that, reduction in surface roughness can be achieved by restoring the process 

stability. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.13 Effect of discharge energy on the surface roughness 

7.5 MACHINE LEARNING APPROACH TOWARDS FAILURE 

PREDICTION AND PROCESS CONTROL 

This section deals with the development of machine leaning models for failure 

prediction and severity assessment during wire EDM process. Training dataset 

for the supervised machined learning models are from the 108 experiments 

conducted according to full factorial design. The input parameters and levels are 

given in Table 7.1. The proposed system works in three layers. Firstly, a neural 

network classifier predicts the mode of failure – wire breakage or spark absence. 

Secondly, for each failure cases, a second neural network model assesses the 

failure severity. A parameter called remaining useful life (RUL) is introduced as 
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an indicator of machining instability. Finally, process control is achieved through 

a thresholding approach.  

7.5.1 Artificial neural network classification 

Artificial neural network (ANN) is a supervised machine learning tool which tries 

to bio-mimic the human neurons to learn and process information. The technique 

is capable of accurately modelling complex real-world phenomena. In the present 

case, the model classifies the process conditions into three machining outcomes 

based on extracted discharge characteristics and abnormal pulse proportions. The 

multiple class labels are normal machining, spark absence and wire breakage. The 

inputs to the model are spark frequency, discharge energy, short spark ratio, and 

open spark ratio. ANN classifier parameters and details are given in Table 7.6. 

Also, different ANN structures are tested for performance and among them,         

4-10-10-10-3 is chosen based on maximum accuracy. The ANN structure is given 

in Fig. 7.14.  

Table 7.6 Parameters of neural network multiclass classifier 

Parameter Properties 

Number of inputs 4 

Input layer neurons 
Spark frequency, discharge energy,  
short circuit ratio, open circuit ratio 

Number of classes 3 

Output layer neurons 
Probability of normal machining, 
wire breakage, and spark absence 

Number of hidden layers 3 

Number of neurons in each hidden 
layer 

10 

Cross validation  5-fold cross validation 
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Fig. 7.14 ANN classifier structure 

 

 

 

 

 

 

 

 

Fig. 7.15 Confusion matrix showing classifier performance 

7.5.2 Performance of ANN classifier 

Neural network classification is the first stage in this process control approach. 

The classifier is trained to predict whether the machining outcome is normal 

machining, wire breakage or spark absence. ANN classifier is trained by a dataset 

of size 108 x 4. Being a supervised model, true class labels for all training cases 

are also fed during the training phase. The neural network model adjusts its 

weights and biases to minimize the error between the model prediction and 

experimental results. Performance of ANN classifier is represented through a 

confusion matrix in Fig. 7.15. The model is observed to be 98.1 % accurate in 
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classifying the machining outcomes. A 5-fold cross validation is performed on 

the dataset. 

In case the machining outcome predicted is wire breakage or spark absence, then 

the next stage is initiated, which is to assess the severity of the situation. 

7.5.3 Assessment of failure severity 

A parameter called remaining useful life (RUL) is used to assess the criticality of 

predicted failure. RUL is the machining time left before the predicted failure 

occurs. The representation of RUL parameter in a ‘machining condition vs. time’ 

graph is represented in Fig. 7.16. A lesser RUL value is considered more critical, 

since it indicates sudden failure. Such a situation demands an immediate 

intervention to restore the machining stability to overcome the potential failure. 

A higher value of RUL indicates initial stages of an instability, which can 

accumulate over the time and result in a failure. For every failure condition 

among the 108 experiments, RUL value is also noted. These details are used to 

train a neural network regression model to predict RUL value. The performance 

of ANN model is given in Fig. 7.17. A corelation coefficient of 0.988 is obtained 

for the developed model. Based on the type of failure and predicted values of 

RUL, a process control algorithm recommends parameter adjustments to restore 

the machining stability.  

 

 

 

 

 

Fig. 7.16 Remaining useful life (RUL) based on failure condition 
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Fig. 7.17 ANN regression plot 

7.5.4 Process control algorithm 

Process control algorithm determines the level of parameter corrections based on 

RUL predictions. Two types of wire breakage mechanisms are documented in the 

literature. Failure mode is Type I when the wire breaks immediately on 

application of voltage across the electrodes. The reason for Type I failure is 

reported to be the physical contact between the electrodes. Type II failure is 

gradual, where the unstable conditions build up over the time to reach a critical 

point where wire breaks. Spark gap bridging by debris accumulation and 

increased short circuit sparks are reported to be the reasons for type II failure. 

Such failures can be forecasted in advance by monitoring the discharge 

characteristic features. Also, the control algorithm can intervene to restore the 

instability build-up by re-tuning the process parameters. The proposed process 

control algorithm facilitates gap flushing which can overcome the debris 

accumulation. However, the retuning of parameters is not done equally for every 
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failure prediction. The proposed algorithm tunes the process parameters 

according to the predicted RUL values. Lower RUL value indicates severe 

instability and demands greater levels of parameter retuning. On the contrary, 

higher RUL value indicates initial stages of instability which requires only slight 

modifications to the parameter settings. Unlike in the previous case, here process 

control to prevent spark absence is also performed based on the predicted severity 

in different levels. Overall approach for process control is given in Fig. 7.18.  

 

 

 

 

Fig. 7.18 Approach for wire EDM process control 

In the case of a wire breakage prediction, the algorithm adjusts pulse on time, 

pulse off time and servo voltage. The severity of predicted failure is categorised 

into three – high, medium and low, based on RUL value. For high severity, all 

the three parameters are adjusted. Pulse on time is lowered, whereas servo voltage 

and pulse off time is increased. For medium severity, pulse off time and servo 

voltage is increased, but pulse on time is unchanged. For low severity, only the 

pulse off time is adjusted. In case of spark absence prediction, the algorithm 

adjusts pulse on time and servo voltage. Here, the severity is categorised into two: 

High and low. At high severity (low RUL), pulse on time is increased and servo 

voltage is reduced. For low severity, only the servo voltage is increased. Fig. 7.19 

shows the flowchart for proposed process control. 

It has to be noted that the proposed process control algorithm gives a set of 

guidelines/procedure for wire EDM process control during the machining of 

Inconel 718. The results obtained so far are very promising and this can later 

evolve to be a generic process control procedure for all material combinations. 

As a future work, multiple workpiece materials can be considered to fine tune the 

control algorithm, to build its capability further.  

Discharge characteristics
• Discharge energy
• Discharge frequency
• Abnormal spark ratios

Machining outcome 
prediction

RUL prediction

Mode of failure

Time to failure

Process control

Wire EDM 
process

Condition monitoring
• Voltage Sensor
• Current sensor

Revised input parameters 



 
 

170 
 

 

 

 

 

 

 

 

 

 

 

Fig. 7.19 Flowchart of process control 

7.5.5 Case studies 

To evaluate the real-world performance of machine learning based process 

control system for wire EDM, 20 additional tests are conducted. The parameter 

combinations are selected randomly for these confirmation tests. The extracted 

discharge parameters, and abnormal spark ratio are also shown in Table 7.7. With 

these extracted features and abnormal spark ratios as input, the ANN classifier 

predicts the machining outcome. In case the predicted outcome is wire breakage 

or spark absence, a second ANN model predicts the RUL for the given machining 

conditions. The accuracy of predicted class and RUL for each of the confirmation 

tests are compared with actual experimental results in Table 7.7. It can be 

observed that the class prediction was accurate in every instance. The RUL 

prediction was also observed to be close to the experimental value. To 

demonstrate the effect of process control on pulse cycles, Exp No. 1 and              

Exp. No. 7 from confirmation tests are considered. The following section 

discusses these effects.  
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Table 7.7 Machining outcome and RUL predictions during confirmation tests 

S. No 

Extracted features  Predicted  Observed 

DE 
SSR OSR 

SF 
 EVENT 

RUL 
 EVENT 

RUL 

(μJ) (Hz) (min) (min) 

1 1568.8 0.94 0.00 84600  WB 2.23  WB 3.2 

2 221.4 0.33 0.00 22800  NM -  NM - 

3 4030.2 0.54 0.26 1950  WB 10.18  WB 9.57 

4 3168.9 0.41 0.28 4500  WB 1.47  WB 1.21 

5 3252.9 0.15 0.19 7800  WB 0.00  WB 0.55 

6 435.3 0.84 0.04 8050  NM -  NM - 

7 58.58 0.17 0.50 300  SA 3.05  SA 2.91 

8 3299.0 0.30 0.01 17000  WB 0.00  WB 0.3 

9 207.7 0.03 0.24 7600  NM -  NM - 

10 4007.0 0.43 0.40 1500  WB 8.16  WB 9.53 

11 456.1 0.64 0.09 7450  NM -  NM - 

12 227.0 0.79 0.00 68450  WB 2.26  WB 2.42 

13 14.5 0.62 0.24 1050  SA 9.70  SA 8.29 

14 2527.7 0.83 0.05 7500  WB 10.83  WB 11.51 

15 459.8 0.62 0.18 6800  NM -  NM - 

16 14.8 0.54 0.19 6200  SA 6.32  SA 7.86 

17 479.6 0.66 0.07 11150  NM -  NM - 

18 2611.9 0.94 0.03 8350  WB 10.98  WB 12.37 

19 15.4 0.58 0.28 1800  SA 9.43  SA 8.57 

20 16.1 0.75 0.00 200  SA 12.87  SA 12.24 

DE- Discharge Energy/spark, SSR- Short Circuit Ratio, OSR- Open Circuit Ratio, SF- Spark 
Frequency, NM- Normal Machining, WB- Wire Breakage, SA- Spark Absence,  

RUL- Remaining Useful Life 

 

Case I: Process control to prevent wire breakage 

Exp. No. 1 from Table 7.7, (TON = 113 μs, TOFF = 30 μs, SV= 35 V, Ip= 40 A, 

WF=3 m/min) is considered to represent the wire break case. The extracted 

discharge characteristics showed very high pulse frequency and discharge energy 

per spark. Experimentally, the said settings resulted in wire breakage when left 

unattended. To prevent this situation, the proposed process control algorithm is 

applied.   
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Fig. 7.20 (a) Original settings (Conf test: Exp. No. 1) (b) Controlled settings 

Initially, the classifier model rightly classified the wire breakage possibility. 

Then, the discharge parameters are sent to the second neural network model, 

which predicted the RUL value. The RUL was verified to be identical to the actual 

time for failure. The RUL is categorised as medium severity by the process 

control algorithm. Based on this assessment, a parameter revision is 

recommended (Pulse off time +10 μs, SV +5 V). When machined with the 

controlled settings (TON = 113 μs, TOFF = 40 μs, SV = 40 V, Ip = 40 A, WF = 3 

m/min) a continuous machining is observed. Through process control, a 

substantial reduction in discharge energy and spark frequency is observed. To 

further evaluate the process stability improvement, pulse cycle is compared with 

the original pulse cycle as given in Fig. 7.20. The controlled settings are able to 

reduce the series of short circuits which are observed in original settings. The 

improvement in process stability is evident, since a short circuit dominant pulse 

cycle is changed to a normal spark dominant pulse cycle after the machining 

condition regulation. This is due to an improvement in spark gap condition by 

overcoming debris accumulation through better flushing conditions.   

 

a) b)
Short circuit sparks

Original parameter settings: TON= 113 μs, 
TOFF= 30 μs, SV= 35V, WF= 3 m/min, Ip=40 A

Controlled parameter settings: TON= 113 μs, 
TOFF= 40 μs, SV= 40V, WF= 3 m/min, Ip= 40 A
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Fig. 7.21 (a) Severely degraded wire surface under original settings (b) Broken 

wire tip (c) Minimal wear after process control 

The improvement in process stability through process control, in case of wire 

breakage prediction, is also analysed considering the improvements to wire wear. 

As shown in Fig. 7.21, SEM images of worn wire surfaces are compared in this 

regard. For the case considered (Exp. No. 1), using the original settings, worn 

wire showed considerable degradation as seen in Fig. 7.21 (a). The surface 

coating is observed to be removed at several areas, exposing the brass inner core. 

The instability builds up till a point where the wire will break at a later stage.          

Fig. 7.21 (b) shows the SEM image of broken wire tip. The process control is 

successful in restoring the process stability, which is indicated by a significantly 

less wire wear as shown in Fig. 7.21 (c).  

The overall improvement to the machining continuity and surface integrity due 

to process control is reported in Table 7.8. A total machining length of 100 mm 

was considered to test the effect of process control. With original settings, 

machining interruptions are reported before a machined length of 20 mm. 

Partially removed 
wire coating 

Debris

a) b)

c)

Broken wire tip

Minimal wire wear
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However, through process control, uninterrupted continuous machining is 

reported for the entire profile length of 100 mm. An improvement in surface 

finish is also reported in each failure case. The effect is more pronounced in cases 

of wire breakage due to the reduction of short circuit discharge percentage during 

parameter regulation. The surface roughness comparison of the machined 

surfaces before and after process control for all the failure cases are shown in  

Fig. 7.22. The improvement in surface morphology is shown separately in          

Fig. 7.23. Here the SEM images of machined surfaces shows significant 

improvement in surface quality. An improved surface finish is reported in each 

case after process control. 

Table 7.8 Effects of process control 

S. No 

Extracted features   Under original settings   
After process 

control 

DE 
SSR OSR 

SF 
 MO 

RUL Ra ML 
 MO 

Ra ML  

(μJ) (Hz) (min) (μm) (mm) (μm) (mm) 

1 227.0 0.79 0.00 68450  WB 2.26 2.76 3.80  NM 1.24 100 

2 2527.7 0.83 0.05 7500  WB 10.83 1.62 20.36  NM 1.51 100 

3 2611.9 0.94 0.03 8350  WB 10.98 1.97 20.64  NM 1.37 100 

4 1568.8 0.94 0.00 84600  WB 2.23 3.21 2.89  NM 1.78 100 

5 16.1 0.75 0.00 200  SA 12.87 1.35 1.03  NM 1.24 100 

6 14.5 0.62 0.24 1050  SA 9.70 1.27 0.97  NM 1.43 100 

7 3168.9 0.41 0.28 4500  WB 1.47 3.08 3.53  NM 1.21 100 

8 3299.0 0.30 0.01 17000  WB 0.00 3.54 0.00  NM 1.43 100 

9 3252.9 0.15 0.19 7800  WB 0.00 3.22 0.00  NM 1.12 100 

10 4030.2 0.54 0.26 1950  WB 10.18 2.03 16.40  NM 1.05 100 

11 4007.0 0.43 0.40 1500  WB 8.16 2.62 14.77  NM 1.53 100 

12 14.8 0.54 0.19 6200  SA 6.32 1.35 0.38  NM 1.32 100 

13 58.58 0.17 0.50 300  SA 3.05 0.98 0.19  NM 0.99 100 

14 15.4 0.58 0.28 1800   SA 9.43 1.51 1.04   NM 1.57 100 

DE- Discharge Energy/spark, SSR- Short Circuit Ratio, OSR- Open Circuit Ratio, SF- Spark 
Frequency, MO – Machining Outcome, NM- Normal Machining, WB- Wire Breakage, SA- 

Spark Absence, RUL- Remaining Useful Life, ML – Machined Length 
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Fig. 7.22 Effect of process control on surface roughness of machined 
components 

 

 

 

 

 

Fig. 7.23 SEM images of machined surface (a) under original settings (b) after 

process control 

Case II: Process control to prevent spark absence 

To demonstrate the effects of process control in spark absence situation              

Exp. No. 7 (TON = 105 μs, TOFF = 50 μs, SV = 38 V, Ip = 10 A, WF = 3 m/min) is 

considered. Pulse train analysis of this condition showed less discharge energy 

and negligible pulse frequency, along with higher proportion of open circuit 

pulses. Based on these, ANN classifier predicted spark absence failure. Then the 

RUL value is predicted by the second neural network model. The predicted 

failure mode and RUL value is verified to be correct experimentally. Based on 

the RUL value, the recommendation settings (TON = 110 μs, TOFF = 50 μs,            

SV = 43 V, Ip = 10 A,  WF = 3 m/min) are applied, which prevents the spark 

absence failure. The discharge characteristics improved to result in higher 

Micro globules
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discharge energy and spark frequency. Pulse cycle comparison showed that the 

open circuit sparks are replaced by normal spark discharges as shown in Fig. 7.24. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.24 (a) Original settings (Conf test: Exp. No. 5) (b) Controlled settings 

7.6 COMPARISON WITH EXISTING MODELS 

The section compares the capabilities of the proposed system with the existing 

wire EDM monitoring systems. One distinguishing feature of the proposed model 

is that it considered multiple failure modes of wire EDM process. Most of the 

failure detection and alert systems proposed thus far have only address the wire 

breakage failure (Kwon and Yan, 2006; Cabanes et al., 2008). Several strategies 

have been implemented by researchers in the past for failure identification. 

Instantaneous energy based (Kwon and Yan, 2006), peak current and ignition 

delay time based (Cabanes et al., 2008) and unstable discharge ratio based (Conde 

et al., 2018) systems some of the notable wire break detection systems. However, 

a process control strategy to restore the machining stability to avoid the predicted 

failures are not proposed with these systems. Process control models which are 

not based on pulse classification may have limited capability to address the 

implications due to abnormal harmful discharges (Mendes et al., 2014; Zhidong 

et al., 2014; Bufardi et al., 2015).  

Regions of 
spark absence

a) b)

Original parameter settings: TON= 105 μs, 
TOFF= 50 μs, SV= 48V, WF= 3 m/min, Ip=10 A

Controlled parameter settings: TON= 110 μs, 
TOFF= 50 μs, SV= 43V, WF= 3 m/min, Ip=10 A
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Fuzzy logic based wire EDM condition monitoring systems may be inaccurate in 

failure identification and control since such models are expert knowledge 

dependent and they cannot be trained based on experimental data (Yan and Liao, 

1996; Bufardi et al., 2015; Liao and Woo, 2000). A neural network model is 

reported to be better suited to handle such stochastic phenomena like wire EDM 

failure event, which led to its implementation in the proposed system.  

The proposed model implements a pulse classification based failure prediction 

system, which is integrated with a process control system based on failure 

severity. The parameter remining useful life (RUL) is chosen as an indicator of 

severity of predicted failure. Even though RUL is already used in tool condition 

monitoring research, its capability is not yet utilised in the context of process 

control. Finally, apart from ensuring a failure-free operation, the proposed 

algorithm is reported to result in improved surface integrity for the machined 

parts, which most of the existing algorithms have failed to report. Table 7.9 

compares the capabilities of the existing models with the model proposed in this 

study. The mode of operation (online, offline or hybrid), machine learning 

algorithm used, pulse classification, failure alert facility, modes of failure 

considered, availability of process control algorithm and general capabilities are 

compared in this table. Only the models proposed since 2005 is shown in this 

comparative analysis.    

7.7 SUMMARY 

The chapter discusses wire EDM process control system, which is developed 

based on the pulse train analysis. Firstly, a rule-based algorithm is developed to 

assesses failure severity based on average discharge energy of pulse cycles. Short 

circuit dominant pulse cycle will have highest discharge energy and is regarded 

as most critical. This system performs severity-based variable process control for 

wire break situations. Such a system is suitable in case of lesser training data. If 

the amount of training data is more, then neural network-based systems can 

perform better in process control. The proposed neural network-based process 
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control system works in three stages. Failure detection is performed by ANN 

classification. The trained classifier model predicts the mode of failure.  

Table 7.9 Comparison of existing wire EDM monitoring models 

S. 
No 

Author, 
year 

Mode 
Algorithm 
/ Method 

Pulse  
classifi
cation 

Alert/ 
alarm 

Failure 
modes 

Process  
control 

Capability 

1 
Kwon and 
Yan, 2006 

Online  ✓ ✓ Wire 
breakage 

_ 
Suggests stable working 
region based on 
instantaneous energy 

2 
Cabanes  
et al., 2008 

Online 
Heuristic 
rule based 

_ ✓ 
Wire 

breakage 
_ 

Triggers multiple alarms 
based on risk of wire 
breakage 

3 
Kumar and 
Choudhury
, 2011 

Offline Regression _ _ 
Wire 

breakage 
_ 

Offline prediction of wire 
breakage 

4 
Kumar  
et al., 2013 

Offline Regression _ _ 
Wire 

breakage 
_ 

Offline prediction of wire 
breakage 

5 
Mendes  
et al., 2014 

Offline N.A. _ _ N.A. _ 
Performance evaluation 
based on cutting rate, time 
and energy consumption 

6 
Zhidong  
et al., 2014 

Online Rule based _ _ N.A. ✓ 
Proposes spark gap 
regulation based on current 
pulse probability 

7 
Kwon  
et al., 2015 

Online Rule based ✓ _ 
Wire 

breakage 
✓ 

Reduces unstable discharge 
ratio and discharge energy 
to improve cutting speed 
and Ra 

8 
Bufardi  
et al., 2015 

Hybrid Fuzzy logic _ _ N.A. ✓ Prevention of surface 
damages 

9 
Caggiano 
et al., 2018 

Online 
Threshold 

based 
✓ _ N.A. _ 

Proposed a methodology 
for feature extraction from 
wire EDM pulse signals 

10 
Osswald  
et al., 2018 

Online 
Threshold 

based 
✓ _ N.A. _ 

Pulse classification 
algorithm based on ignition 
delay for high speed 
WEDM 

11 
Conde  
et al., 2018 

Online N.A. ✓ _ N.A. _ 
Found relation between 
abnormal spark ratio, wire 
lag and geometric error 

12 
Bergs  
et al., 2018 

Online N.A. ✓ ✓ Wire 
breakage 

_ 
Proposed a basis for early 
detection of wire breakage  

13 
Proposed 
model 

Hybrid 

Threshold 
based,  
Neural 

network 

✓ ✓ 

Wire 
breakage, 

Spark 
absence 

✓ 

Prediction of mode of 
failure (wire breakage or 
spark absence), evaluation 
of failure severity, and 
process control through 
parameter regulation 
Prevents process failure 
and improves machining 
performance 



 
 

179 
 

In second stage, a neural network model predicts the remaining useful life (RUL) 

at the time of assessment. The RUL based variable process control is applied to 

both modes of failures in this case. Finally, a process control algorithm revises 

the process parameters like pulse on time, pulse off time, and servo voltage to 

restore the process stability. The effectiveness of process control is evaluated by 

pulse cycle comparison, surface integrity analysis, and wire wear study. 

Confirmation tests are conducted to evaluate the system performance in real 

world machining situation. Process control ensured failure free continuous 

machining in every case. Pulse train originally dominant by abnormal pulses is 

brought back to a stable cycle with normal discharges. Also, process control is 

observed to reduce wire wear substantially. Surface integrity analysis showed 

significant reduction in average surface roughness values after process control. 

Micro structural studies revealed a smoother surface with no visible surface 

damages after process control.   
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CHAPTER 8 

CONCLUSIONS AND FUTURE SCOPE 

 

8.1  CONCLUSIONS 

Wire EDM process has immense potential over the conventional machining 

techniques to cut intricate and complex shapes in ‘difficult to cut’ materials. 

However, the process is often regarded as less efficient and reliable due to 

unexpected failures and process interruptions. Even after several attempts to 

optimize the settings, the failures are reported to happen due to the stochastic 

process mechanism and involvement of several uncontrollable factors. To make 

the process sustainable, efficient and future proof, there need to be a system which 

can predict the events of process failures, and control the process parameters to 

overcome those machining interruptions. In this regard, the current research work 

aims to develop a condition monitoring and process control system for wire EDM 

process.  

Following are the salient conclusions drawn from this research study: 

• Microstructural analysis of wire surface revealed distinct characteristics 

leading to wire breakage, like extensive degradation of wire coating, 

presence of melt pool, and presence of impinged debris.  

• At higher instabilities, the surface integrity is found to degrade 

significantly which is evident from an increase in surface roughness from 

1.55 μm to 2.97 μm at conditions C2 and C6 respectively. Similarly, 

flatness error increased from 0.6 μm to 2.95 μm, circularity error 

increased from 0.9 μm to 2.9 μm, and cylindricity error increased from 

1.9 μm to 3.8 μm at conditions C2 and C6 respectively.  
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• An offline artificial neural network (ANN) classifier is developed to 

predict the mode of machining failure with 90.1 % classification accuracy. 

The classifier performed with 95 % accuracy during confirmation tests.  

• Using 31-central composite design (CCD) experimental runs as training 

data, an ANFIS model based decision support system is developed to alert 

the operators on potential wire breakages. The system rightly predicted 

all occurrences of wire breakages during 9 confirmation test runs. 

• Using a sensor based condition monitoring system, discharge 

characteristics like spark energy, spark frequency, and abnormal spark 

ratios are found to have significant effect on cutting speed and surface 

roughness. An ANN model is developed with closeness coefficient of 

0.984 to predict the responses based on in-process data.  

• A pulse classification algorithm is designed based on the ignition delay 

time to classify the discharge pulses into normal, arc, open and short 

circuit discharges. Higher proportion of short circuit and open circuit 

pulses are observed before wire breakage and spark absence failures 

respectively.  

• During the analysis of process failures, the wire breakages are observed 

to be preceded by a short circuit predominant discharge cycle, having an 

average spark discharge energy greater than 500 μJ, and a sparking 

frequency greater than 10000 Hz. On the other hand, discharge cycle 

leading to spark absence failures are observed to have a higher proportion 

of open circuit discharges, with an average spark discharge energy less 

than 50 μJ, and a sparking frequency less than 10000 Hz. 

• A threshold based online failure prediction and process control system is 

developed based on the extracted discharge features like discharge 

energy, pulse frequency, short circuit spark ratio, and open circuit spark 

ratio. The system not only succeeded in forecasting and preventing the 

process failures, but also improved the average surface roughness by             

31 %.  
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• Finally, a neural network based process control system is developed to 

predict mode of failure with 98.1 % classification accuracy. The system 

considers ‘remaining useful life (RUL)’ as an indicator of failure severity. 

A trained ANN regression model predicts the RUL with a closeness 

coefficient of 0.988.  

• Based on mode and severity of predicted failure, the process control 

system prevents the occurrences of machining failures and improves the 

average surface roughness by 38 %. 

 

8.2  SCOPE OF FUTURE WORK 

The existing study gives more emphasis on the failure prediction and its 

eradication. A follow-up study can be conducted to extend the proposed 

monitoring system to predict and control the surface integrity in real time. Such 

a system can double up as an online inspection system for the machined 

components. Effectiveness of such a model during the machining of industrially 

significant profiles like fir tree slots can be explored. Also, further analysis can 

be conducted on the dependency of material properties on the discharge 

characteristics. For e.g., in order to make the predictive model effective against 

multiple materials, the model shall be retrained with a sufficiently large dataset 

generated by considering several materials which are commonly machined by 

wire EDM. Also, the process control algorithm can be further developed to 

perform parameter tuning as a function of RUL or any suitable indicator of failure 

severity, instead of discrete incremental steps. Since the problem of arcing is 

common to every electric discharge machining process, the proposed monitoring 

system can be further extended to other varieties of EDMs. 

 

 

 



 
 

183 
 

APPENDIX I 

Table 1 Details of 108 experiments 

S. 
No 

TON 
(μs) 

TOFF 
(μs) 

SV 
(V) 

IP 
(A) 

WF 
(m/min) 

DE 
/spark 
(µJ) 

SSR OSR SF MO 
RUL 
(min) 

1 105 30 30 40 3 1614 0.83 0.05 75000 WB 2.66 

2 105 30 50 40 3 508 0.35 0.29 31000 NM - 

3 105 40 30 40 3 544 0.38 0.15 12000 NM - 

4 105 40 50 40 3 560 0.40 0.48 26000 NM - 

5 105 50 30 40 3 549 0.42 0.30 28500 NM - 

6 105 50 50 40 3 583 0.36 0.57 14000 NM - 

7 110 30 30 40 3 1044 0.38 0.32 56500 WB 0.32 

8 110 30 50 40 3 1066 0.41 0.28 45000 WB 2.08 

9 110 40 30 40 3 1034 0.31 0.40 22500 NM - 

10 110 40 50 40 3 987 0.52 0.29 69000 WB 3.11 

11 110 50 30 40 3 1124 0.38 0.13 16000 NM - 

12 110 50 50 40 3 1002 0.51 0.32 50500 WB 5.95 

13 115 30 30 40 3 1477 0.54 0.26 82500 WB 0.58 

14 115 30 50 40 3 1596 0.11 0.29 9000 NM - 

15 115 40 30 40 3 1485 0.53 0.10 65500 WB 2.67 

16 115 40 50 40 3 1646 0.17 0.24 11500 NM - 

17 115 50 30 40 3 1618 0.17 0.32 11500 NM - 

18 115 50 50 40 3 1659 0.20 0.10 5000 NM - 

19 105 30 30 10 3 157 0.23 0.11 25000 NM - 

20 105 30 50 10 3 77 0.33 0.31 24500 NM - 

21 105 40 30 10 3 135 0.24 0.31 34000 NM - 

22 105 40 50 10 3 48 0.04 0.58 12000 SA 0.70 

23 105 50 30 10 3 32 0.00 0.31 13500 SA 0.70 

24 105 50 50 10 3 43 0.31 0.44 19500 SA 0.30 

25 110 30 30 10 3 141 0.38 0.23 6500 NM - 

26 110 30 50 10 3 145 0.34 0.30 39500 NM - 

27 110 40 30 10 3 239 0.39 0.16 13500 NM - 

28 110 40 50 10 3 123 0.37 0.25 37500 NM - 

29 110 50 30 10 3 253 0.36 0.38 21000 NM - 

30 110 50 50 10 3 43 0.45 0.45 14500 SA 0.50 

31 115 30 30 10 3 135 0.14 0.11 27000 NM - 

32 115 30 50 10 3 161 0.16 0.33 32000 NM - 

33 115 40 30 10 3 122 0.28 0.05 57500 NM - 

34 115 40 50 10 3 139 0.41 0.31 19500 NM - 

35 115 50 30 10 3 241 0.24 0.38 22500 NM - 

36 115 50 50 10 9 66 0.13 0.48 15500 SA 0.45 

37 105 30 30 40 9 1382 0.79 0.00 68450 WB 2.98 

38 105 30 50 40 9 483 0.26 0.02 25150 NM - 

39 105 40 30 40 9 477 0.33 0.00 23400 NM - 

40 105 40 50 40 9 528 0.24 0.01 24000 NM - 

41 105 50 30 40 9 503 0.33 0.00 22800 NM - 
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42 105 50 50 40 9 553 0.10 0.09 11500 NM - 

43 110 30 30 40 9 958 0.53 0.01 77000 WB 2.27 

44 110 30 50 40 9 1031 0.15 0.19 7800 NM - 

45 110 40 30 40 9 981 0.62 0.03 55250 WB 2.98 

46 110 40 50 40 9 1044 0.16 0.12 8950 NM - 

47 110 50 30 40 9 1059 0.24 0.01 12100 NM - 

48 110 50 50 40 9 1062 0.18 0.20 7550 NM - 

49 115 30 30 40 9 1627 0.51 0.00 48600 WB 1.98 

50 115 30 50 40 9 1693 0.11 0.11 9150 NM - 

51 115 40 30 40 9 1643 0.42 0.01 55200 WB 2.53 

52 115 40 50 40 9 1642 0.21 0.12 9400 NM - 

53 115 50 30 40 9 1631 0.26 0.00 12750 NM - 

54 115 50 50 40 9 1640 0.16 0.17 7550 NM - 

55 105 30 30 10 9 123 0.18 0.00 29950 NM - 

56 105 30 50 10 9 228 0.25 0.01 37900 NM - 

57 105 40 30 10 9 339 0.31 0.00 20750 NM - 

58 105 40 50 10 9 351 0.24 0.07 19650 NM - 

59 105 50 30 10 9 245 0.30 0.01 23950 NM - 

60 105 50 50 10 9 37 0.32 0.04 17650 SA 0.45 

61 110 30 30 10 9 135 0.33 0.00 20550 NM - 

62 110 30 50 10 9 248 0.26 0.26 6600 NM - 

63 110 40 30 10 9 140 0.31 0.00 15900 NM - 

64 110 40 50 10 9 249 0.28 0.06 12400 NM - 

65 110 50 30 10 9 136 0.40 0.01 14700 NM - 

66 110 50 50 10 9 152 0.25 0.21 6550 NM - 

67 115 30 30 10 9 144 0.23 0.02 15450 NM - 

68 115 30 50 10 9 253 0.21 0.12 9400 NM - 

69 115 40 30 10 9 138 0.32 0.02 16300 NM - 

70 115 40 50 10 9 50 0.27 0.19 8400 NM - 

71 115 50 30 10 9 149 0.21 0.02 12600 NM - 

72 115 50 50 10 9 55 0.29 0.16 7950 NM - 

73 105 30 40 40 3 515 0.23 0.00 27950 NM - 

74 105 40 40 40 3 567 0.21 0.00 23000 NM - 

75 105 50 40 40 3 523 0.21 0.03 17400 NM - 

76 110 30 40 40 3 1650 0.57 0.00 46100 WB 2.92 

77 110 40 40 40 3 1087 0.22 0.03 10950 NM - 

78 110 50 40 40 3 1104 0.16 0.03 10600 NM - 

79 115 30 40 40 3 1600 0.15 0.04 12800 NM - 

80 115 40 40 40 3 1654 0.41 0.03 50650 WB 3.03 

81 115 50 40 40 3 1586 0.24 0.03 11500 NM - 

82 105 30 40 10 3 134 0.34 0.00 21900 NM - 

83 105 40 40 10 3 228 0.26 0.01 38500 NM - 

84 105 50 40 10 3 151 0.17 0.04 20400 NM - 

85 110 30 40 10 3 55 0.10 0.51 16200 SA 0.65 

86 110 40 40 10 3 35 0.27 0.29 15150 SA 0.40 

87 110 50 40 10 3 43 0.22 0.50 11800 SA 0.25 

88 115 30 40 10 3 134 0.31 0.06 15850 NM - 

89 115 40 40 10 3 138 0.35 0.09 13200 NM - 

90 115 50 40 10 3 51 0.19 0.42 8400 SA 0.20 



 
 

185 
 

91 105 30 40 40 9 1542 0.31 0.00 39250 WB 3.38 

92 105 40 40 40 9 554 0.21 0.00 28400 NM - 

93 105 50 40 40 9 541 0.14 0.01 16850 NM - 

94 110 30 40 40 9 512 0.39 0.00 27750 NM - 

95 110 40 40 40 9 1134 0.17 0.06 10250 NM - 

96 110 50 40 40 9 1101 0.21 0.02 11200 NM - 

97 115 30 40 40 9 1625 0.41 0.03 40900 WB 2.58 

98 115 40 40 40 9 1554 0.19 0.05 11000 NM - 

99 115 50 40 40 9 1594 0.18 0.04 10050 NM - 

100 105 30 40 10 9 131 0.30 0.00 13350 NM - 

101 105 40 40 10 9 235 0.30 0.00 34000 NM - 

102 105 50 40 10 9 135 0.22 0.07 15750 NM - 

103 110 30 40 10 9 237 0.23 0.00 20750 NM - 

104 110 40 40 10 9 258 0.20 0.14 9900 NM - 

105 110 50 40 10 9 30 0.14 0.29 13400 SA 0.45 

106 115 30 40 10 9 239 0.36 0.03 21100 NM - 

107 115 40 40 10 9 33 0.16 0.39 14350 SA 0.70 

108 115 50 40 10 9 41 0.16 0.42 11750 SA 0.40 

DE- Discharge Energy/spark, SSR- Short Circuit Ratio, OSR- Open Circuit Ratio, SF- Spark 
Frequency, NM- Normal Machining, WB- Wire Breakage, SA- Spark Absence,  

RUL- Remaining Useful Life 
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