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Abstract—Fast running sorting of streaming input data sam-
ples is very important in many applications such as order statis-
tics, nonlinear filtering, MMax selective-tap adaptive filtering
etc. This paper proposes a high performance VLSI architecture
for the modified SORT-N algorithm for fast running sorting.
Through analysis and also through synthesis results, we show
that the critical path of the proposed architecture is almost
independent of the sorting order N. ASIC synthesis results of
the designed architecture shows that the proposed architecture
has double the performance for N=1024 along with a reduction in
area and power metrics compared to state-of-the-art architecture
reported in literature and thus, it is potentially useful in real-time
applications which have stringent throughput requirements.

Index Terms—VLSI architectures, SORT-N, order statistics

I. INTRODUCTION

Sorting of data is a common problem in many fields, each
of them with different requirements and characteristics. There
are several sorting algorithms and architectures available for
batch processing [1]–[3], in which all the data to be sorted is
available at the same time. However, for certain applications
like median filtering, order statistics based filtering and partial
update adaptive filtering, the input comes in a streaming fash-
ion i.e., one sample at a time into the system. For these kind
of applications, considering their real-time nature, dedicated
ASIC/FPGA architectures are needed to support their high
throughput requirements [4], [5]. We focus our architecture
to the problem of continuous data stream sorting.

The problem of continuous data stream sorting has been
addressed in many previous works in literature [6]–[8]. How-
ever, all of them assume a sliding window for sorting where
the sorted data array of the window size. Each cycle a sample
leaves the window and another sample enters the window
creating a partially sorted array. However, in some applications
such as linear detection of a weak signal in the presence of
impulsive noise [9], the last N samples streamed are sorted
and utilized to make a decision. Once a decision is made,
the sorted register array is reset to accept N new samples.
Therefore existing methods to sort streaming data are not
suitable in the mentioned application, since the entire sorted
array is reset before the next sort. Hence, in [10], the authors
devised a method and it’s VLSI architecture, called “SORT-
N”, to perform running sort on N incoming samples in N
clock cycles. However, as we show the critical path of the
architecture proposed in [10] increases logarithmically with N
which can become a potential bottleneck for large N . In this

work, we address this issue. We first review the architecture
presented in [10].

II. BACKGROUND

The block diagram of the SORT-N architecture that was
proposed in [10] is shown in Fig. 1. The design sorts N
samples in N clock cycles in the ascending order. The archi-
tecture has N registers and each register has a corresponding
comparator (CMP), multiplexer (MUX) and a multiplexer
controller (MUX CTRL). A leading-one-detector (LOD) and
a counter are used to decode the register to which the input
sample has to be loaded. Each incoming sample arriving every
clock cycle is stored in REGIN and is compared with all the
samples in the N registers in parallel through comparators
CMP0, CMP1, . . . CMPN-1 to produce a comparator code
cmp[0 : N − 1]. The comparator produces a logical high (‘1’)
if the input sample is lesser than the corresponding register
value and a logical low (‘0’) if input sample is greater. The
comparator code generated is then fed to the LOD. Given a
binary code, an LOD finds the position of the leading one
in the code. Therefore the LOD block’s output indicates the
register position where the incoming sample has to be inserted
in the register array. The structure of the LOD block and
it’s effect on critical path delay are discussed in the next
section. Before inserting the sample, the values in that register
and to it’s right need to be shifted right. The MUX CTRL
logic generates the select signal to the corresponding MUX
to select the appropriate input by comparing each register’s
position with the LOD generated position. Each MUX has
three inputs- previous register input (shift operation), present
register feedback (retain operation) or the incoming sample
(load input operation) selected based on MUX CTRL logic.

In SORT-N an LOD has been used to decode the comparator
code and find the position where the new sample has to be
inserted. It can be observed that the register array at any point
of time is always sorted (excluding the reset valued registers)
and thus the comparator code produced is always a series of
0’s followed by 1’s. We analyse in the next section that for
such a comparator code pattern an LOD is not necessary and
can be replaced with a simpler design. Additionally in a special
scenario where the input sample is greater than all the samples
a comparator code with all zeros is generated for which the
LOD may not produce a valid output. In order to counter
this problem, SORT-N uses an N bit counter to generate the
load position. The index generator block (IG) has been used
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Fig. 1: SORT-N Architecture [10]

to select between the LOD and counter value based on LOD
valid signal. We show in the next section that by sorting in
the descending order, the counter circuitry can be avoided.

III. PROPOSED XSORT-N ARCHITECTURE

The block diagram of the proposed VLSI architecture
coined “XSORT-N” is shown in Fig. 2. Similar to SORT-N,
the proposed architecture performs the sorting of N samples
in N clock cycles and has a set of N registers and corre-
sponding multiplexer (MUX) and comparator (CMP). Unlike
the previous approach this architecture performs sorting in
the descending order. Initially all the N registers are reset
to 0 and the input sample is stored in register REGIN every
clock cycle. The input sample stored in REGIN is compared
with all the samples in the N registers in parallel through
comparators CMP0, CMP1, . . . CMPN-1. Since the sorting is
done in descending order in this architecture, when the input
sample is greater than the sample stored in a register, the
corresponding comparator produces a logical high (‘1’) or else
a logical low (‘0’). It should be noted that comparator CMP0
to CMPN-1 outputs are always a stream of 0’s followed by
1’s since the register values are always sorted in descending
order at any point of time. For example if the registers REG0-
REGN-1 contain 8, 6, 5, 3, 2, 0 . . . 0. For an input 4, the first
three values have to be retained, the input has to be inserted

into the 4th place and the subsequent values right shifted. The
comparator code that would be produced is 0, 0, 0, 1, 1, 1, . . . 1.
It can be observed that the load register can be decoded by
just a simple XOR operation on neighbouring comparator
outputs (xor[x] = cmp[x− 1]⊕ cmp[x]). The code generated
after XOR operation is 0, 0, 1, 0, 0, . . . 0, where the position
of 1 corresponds to REG3. It must be noted that there is no
XOR output corresponding to REG0. So the place where the
comparator code transitions from 0 to 1 is the place where
the XOR gate output would be high and the corresponding
MUX would switch to the load operation. The rest of the
registers to the right of the load register will have an XOR
output 0 and CMP output 1 and will be right shifted to
accommodate the new sample. Whenever a comparator code
is 0, the corresponding register value is always retained and
does not depend on XOR outputs. The truth table for MUX1
- MUXN-1 is given in Table I. An XOR output of 1 and a
corresponding CMP output of 0 can only occur at a 1 to
0 transition in the comparator code. Since the numbers are
always sorted in descending order the only valid code is a
series of 0’s followed by 1’s, therefore such an XOR-CMP
combination is invalid. At the end of the sorting procedure,
the N sorted samples are stored in registers REG0 - REGN-1
in the descending order and are available as parallel outputs
r[0] − r[N − 1]. After the sorted samples are utilised, the
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Fig. 2: Proposed XSORT-N Architecture

registers are then reset to accept another round of N samples.
The truth table of multiplexer MUX0 which loads input

to REG0 is shown in Table II. Whenever cmp[0] is 0, i.e
input sample is smaller than REG0 value, then REG0 value
is retained as in the other multiplexers. When cmp[0] is 1, the
input sample is greater than REG0 value and since at any point
of time, the largest value is stored in REG0, the entire register
array is shifted right and input sample is directly loaded to
REG0. This scenario where the value of cmp[0] becomes 1
occurs when the input sample is greater than all the register
values. As can be seen there is no need of a counter as was
used in the original SORT-N design. Another corner scenario
is when the input sample is zero, which would produce a
comparator code containing all 0’s, which sets all the registers
in the retain mode of operation. Since the reset value of all
registers is 0, the input sample need not be loaded anywhere.
After the N samples are input in N clock cycles, if there are
m zero samples, then the last m registers would be containing
the zeros.

TABLE I: Truth table for MUXx, x = 1, 2 . . . N − 1

xor[x] cmp[x] Operation Output
0 0 Retain REGx

0 1 Shift REGx − 1

1 1 Load REGIN
1 0 Invalid –

TABLE II: Truth table for MUX0

cmp[0] Operation Output
0 Retain REG0
1 Load REGIN

A. Critical path analysis

To analyze the timing of SORT-N and it’s maximum op-
erating frequency, the critical path of the design has to be
identified. In the original SORT-N design the critical path
is the path consisting of the multiplexer select logic. It is
given as Tcp1 = TCMP + TLOD + TIG + TMUX CTRL, where the
delays TCMP, TLOD, TIG and TMUX CTRL are the delays of the
CMP, LOD, IG and MUX CTRL blocks. A major contributor
to delay is the LOD block. The diagram of a typical tree
structured LOD block [11] is shown in Fig. 3. It can be seen
that as the LOD input sample width doubles, one new layer of
LOD decoding is required and therefore LOD delay increases
linearly as input bit width doubles. Therefore the critical path
delay of SORT-N for a fixed sample width and sorting order
N is of O(log2N), due to the LOD.
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Fig. 3: A typical LOD tree structure
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TABLE III: Synthesis Results in GSCLIB045 45nm CMOS.

Design N Min Delay
(ns)

Max CF
(GHz)

Power
(mW )

Area
(µm2)

PDP
(fJ)

EDP
(mW · ns2)

SORT-N [10]
32 0.720 1.38 27.43 21015 19.75 14.22
128 0.990 1.01 91.49 87063 90.57 89.67
512 1.210 0.83 333.93 376478 404.058 488.91

Proposed
XSORT-N

32 0.481 2.08 39.02 22514 18.77 9.03
128 0.525 1.91 138.58 83002 72.76 38.20
512 0.565 1.77 512.56 301999 289.59 163.62

CF: Clock frequency, PDP: Power delay product, EDP: Energy delay product

In the proposed XSORT-N design, similar to the original
design the multiplexer select logic path is the critical path.
From Fig. 2 it can be seen that the critical path delay is
given by Tcp2 = TCMP + TXOR + TMUX, where TCMP, TXOR
and TMUX are the delays of the CMP, XOR and the MUX
blocks. Comparing the original SORT-N’s critical path, it can
be seen that the LOD delay which increased logarithmically
with N has been replaced by a fixed delay XOR gate. None of
the blocks in the critical path have a dependancy on the sorting
order N . Therefore it can be seen that the proposed XSORT-N
design has a lower critical path delay and in addition to that,
delay remains constant even as the sorting order N increases.
Significant delay reduction could be obtained by the proposed
design over SORT-N, especially for high values of N .

In both the designs, ideally every register to register path
has the same critical path as described above, but practically
speaking, the path from REGIN to any other register would
have more delay because of the high fanout of REGIN. The
high fanout problem is common to both the designs and
increases as the value of N increases. It can be mitigated by
the use of various fanout optimization techniques like usage
of buffers, etc.

IV. VLSI IMPLEMENTATION RESULTS

The proposed XSORT-N architecture as well as SORT-N
have been implemented in Verilog HDL and simulated using
Cadence NCsim simulator to verify the sorting process. SORT-
N contains a control path consisting of a counter to indicate
that sorting is ready once N samples are read. For a more fair
comparison a log2N bit counter was also added to XSORT-N
to generate the ready control signal. Both the designs have
been synthesized using Cadence Genus synthesis tool with
Cadence’s GSCLIB045 45nm library. The synthesis results of
the two designs for a sample bit width W = 16 and for sorting
order N = 32, 128, and 512 are shown in Table III.

From Table III, it can be observed that the XSORT-N design
has a higher maximum attainable clock frequency (CF) and
lesser critical path delay compared to the SORT-N design
for all N values. As the N value increases the critical path
delay also increases more in the case of the SORT-N design
because of the LOD block. It can also be seen that the area is
also slightly lesser for XSORT-N especially as N increases.
The power dissipation of XSORT-N is higher than SORT-N,
but since both are synthesized at different target frequencies,
power metrics cannot be compared directly. To remove the
clock frequency aspect in power we take the power delay

product (PDP) and energy delay product (EDP) as the metrics
[12] which are more meaningful in this scenario. It can be seen
that both PDP and EDP are lower for XSORT-N. Therefore the
increase in power reported in XSORT-N is due to it’s higher
operating frequency. XSORT-N will have lower power when
both are synthesized at the same target frequency. The XSORT-
N design has around 36.5%, 57.4% and 66.5% reduction in
EDP over SORT-N for N = 32, 128, 512 respectively.
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Fig. 4: Delay vs N plot

The change in the critical path delay as the sorting order N
is doubled is shown in Fig. 4. It can be seen clearly that in the
case of SORT-N, the delay increases linearly as N doubles,
whereas with the proposed XSORT-N the delay remains more
or less constant. The slight increase in delay observed for
XSORT-N with N is because of the increase in fanout of
REGIN.

V. CONCLUSIONS

In this paper, a high performance version of the SORT-N
design coined the XSORT-N which performs continuous sort-
ing of N streaming samples in N clock cycles was presented.
The LOD block which was the main timing bottleneck in the
SORT-N design was replaced by a novel XOR gate based
design. By analysis and through synthesis it was shown that
the proposed design achieved less critical path delay and is
independent of the sorting order N . For high values of N , the
proposed design achieves very high performance along with
lesser area and power metrics and could be very useful in real
time applications having high throughput requirements.
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