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Abstract: A simple and cost-effective optical sensing system based on quinizarin fluorescent dye
(QZ) for the selective and reversible sensing of CH3COO− anions is reported. The anion binding
affinity of QZ towards different anions was monitored using electronic absorption and fluorescence
emission titration studies in DMSO. The UV-visible absorption spectrum of QZ showed a decrease
in the intensity of the characteristic absorption peaks at λ = 280, 323, and 475 nm, while a new peak
appeared at λ = 586 nm after the addition of CH3COO− anions. Similarly, the initial strong emission
intensity of QZ was attenuated following titration with CH3COO− anions. Notably, similar titration
using other anions, such as F−, Cl−, I−, NO3

−, NO2
−, and H2PO4

-, caused no observable changes in
both absorption and emission spectra. The selective sensing of CH3COO− anions was also reflected
by a sharp visual color change from bright green to faint green under room light. Further, the binding
was found to be reversible, and this makes QZ a potential optical and colorimetric sensor for selective,
reversible, and ppb-level detection of CH3COO− anions in a DMSO medium.

Keywords: chemosensor; fluorescent sensors for anions; quinizarin dye; acetate anion sensing

1. Introduction

The recognition and sensing of anions have gained immense research interest in
recent years because of their vital role in various biological, environmental, and indus-
trial processes [1]. For instance, fluoride (F−) ions are important for maintaining dental
health and treating osteoporosis [2,3], sulphite (SO3

2−) ions are used in the preservation
industry [4], and CH3COO− ions play a crucial role in various enzymatic and antibody
functions [5]. Superoxide (O2

−) ions, which are reactive oxygen species (ROS), exhibit
distinctive activity in cell growth and metabolism [6,7]. Phosphate (PO4

3−) and halide (X−)
anions are involved in the activity of enzymes, synthesis of protein, hormone transport,
and DNA regulation [8–11]. Cyanide (CN−) ions are frequently employed in metallurgy,
electroplating, gold mining, resins, herbicides, and the manufacture of various organic
chemicals [12]. Although anions are ubiquitous species and play numerous indispens-
able roles, overexposure to anions can cause severe disorders and be harmful to the
environment [13]. Therefore, the qualitative and quantitative detection of anions is of
paramount interest.

Among various anions, the CH3COO− anion in particular has drawn special research
focus because of its unique role in biochemical, environmental, and medicinal sciences.
It has been a common practice to use the rate of CH3COO− generation and oxidation
as a gauge for the decomposition of organic materials in marine sediments [14] and the
trans-metalation of tetrapyrroles [15,16]. The regulation of DNA, hormone transfer, protein
synthesis, and enzyme activities are influenced by the recognition of CH3COO− ions [8–11].
Considering the vitality of CH3COO− ions in both biological and environmental aspects,
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developing suitable sensor systems for the selective, sensitive detection and quantification
of CH3COO− is an important topic of research. Designing colorimetric and fluorescent
anion sensors is of great importance in the current scenario due to their simple proce-
dure, low cost, high sensitivity, and low detection limit [17,18]. In the recent past, several
small-molecule-based chemosensors have been developed and successfully employed for
selective anion recognition and sensing [19–36]. For the detection of anions, the most
prevalent chemosensors are polar -NH protons of urea [37] or thiourea [38], amide [39],
pyrrole [40], and imidazolium [41,42] moieties. Among the different non-covalent interac-
tions studied, hydrogen-bonding interactions are particularly beneficial and successful in
the interaction of anions with a sensor. Coordinative interactions have also been extensively
reported by sensors using metal ions. Sensors that use hydroxyl (-OH) groups as hydro-
gen bond donors have been explored to a lesser extent, although they can form effective
hydrogen bonds with anions or induce deprotonation on anion coordination [43,44].

Anthraquinones are an important class of organic small-molecule fluorescent dyes
that have been used extensively for the selective detection of anions, cations, and toxic
small molecules [45,46]. Anthraquinone derivatives are substances of substantial chemical
and biological interest. For many years, the chromophoric system of anthraquinones
has been widely utilized to make textile dyes [47]. In addition, these compounds play a
significant role as a class of biologically relevant and pharmaceutically active chromophores
as well as an analytical tool for metal sensing [46,48,49]. Quinizarin (QZ, 1,4-dihydroxy-
anthraquinone) is one type of fluorescent anthraquinone with two hydroxyl groups (See
Figure 1 for structure). In this report, we were interested in examining the use of structurally
simple QZ as a selective and reversible fluorescent sensor for anions. We anticipated
that the presence of two -OH groups could act as receptor sites for anion recognition,
either through hydrogen-bonding interactions or deprotonation of phenolic-OH protons
following the binding of anions that subsequently perturbs the optical properties of the QZ
sensor. Indeed, electronic absorption and fluorescence titration studies showed that QZ
can selectively bind with CH3COO− anions via a fluorescence quenching-based sensing
mechanism. The initial fluorescence emission of QZ in DMSO was quenched following
the addition of CH3COO− anions. Notably, similar fluorescence titration studies using
other anions, such as F−, Cl−, I−, NO3

−, NO2
−, and H2PO4

−, exhibited negligible binding
affinity with QZ. Therefore, QZ dye could be a potential optical sensor for the selective and
reversible sensing of CH3COO− anions.
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Figure 1. Structure of Quinizarin (QZ) fluorescent dye.

2. Materials and Methods
2.1. Materials

The reagents and chemicals were obtained from various commercial sources and
used as received, without further purification. For the titration experiments, all anions
were added either as tetrabutyl ammonium or sodium salts. The sensor Quinizarin is
commercially available and was purchased from Sigma-Aldrich (Bangalore, India) and
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used as received. The solvents used for spectroscopic studies were purchased from various
suppliers and were HPLC grade.

2.2. Instrumentations

The UV–visible absorption spectra were measured in quartz cuvettes using Thermo
Scientific evolution 201 (Waltham, MA, USA) spectrometers. Baseline corrections were
applied to all measurements. The fluorescence emission spectra were recorded using the
Perkin Elmer-6500 (Waltham, MA, USA) Fluorimeter. All measurements were carried out
at 298 K, and spectral data were processed using OriginPro 8.5 (Waltham, MA, USA).

2.3. Fluorescence Sensing Studies

For the titration studies, stock solutions of the QZ sensor (1 mM) and different anions
(1 mM) as sodium salts, specifically F−, NO3

−, and NO2
−, or tetrabutyl ammonium salts,

specifically CH3COO−, Cl−, I−, and H2PO4
−, were freshly prepared in DMSO. In a cuvette,

200 µL of 1 mM DMSO solution of QZ was taken and diluted with 1800 µL of fresh DMSO
solvent. CH3COO−, F−, Cl−, I-, NO3

−, NO2
−, and H2PO4

− salts were added to this
solution separately in increments of 20 µL to obtain concentrations up to 90.9 µM. The
fluorescence emission intensity of QZ was monitored before and after the addition of
different anions at various concentrations. For each fluorescence titration experiment, the
sample was excited at λ = 437 nm and the fluorescence quenching efficiency was calculated
using Equation (1):

Quenching efficiency (%) = (I0 − I)/I0 × 100 (1)

where I0 is the initial emission intensity of QZ in DMSO and I is the intensity after the
addition of the anions. The Stern–Volmer quenching constant (KSV) was obtained by fitting
the data using the following Stern–Volmer Equation (2):

I0/I = KSV[Q] + 1 (2)

KSV was calculated from the slope of the linear curve of the relative changes in emission
intensity (I0/I) vs. the concentration [Q] of CH3COO− ions.

3. Results and Discussion
3.1. Anion Sensing Studies Using UV–Vis Titrations

At first, the anion-binding properties of QZ were investigated by UV–Vis absorp-
tion studies at 25 ◦C. Titrations were carried out using 1 mM solutions of QZ in the
DMSO solution. The absorption spectra of QZ were recorded before and after the in-
cremental addition (0.0 to 90.9 µM) of the standard solution (1 mM) of different an-
ions: CH3COO−, F−, Cl−, I−, H2PO4

−, NO2
−, and NO3

−. As shown in Figure 2A, the
DMSO solution of QZ (10 µM) exhibited typical anthraquinone characteristic absorption
bands: a high-energy band at λ = 280 nm (ε = 1.2 × 104 M−1 cm−1), a shoulder band at
λ = 323 nm (ε = 3.5 × 103 M−1 cm−1), and a low-energy broad peak centered at λ = 475 nm
(ε = 9.6 × 103 M−1 cm−1). After the addition of 10 equiv. of CH3COO− ions, the electronic
absorption intensity of the bands at λ = 280 nm and 475 nm decreased significantly, which
was accompanied by the appearance of a longer wavelength with a new absorption band
at λ = 586 nm corresponding to the complex formation between QZ and CH3COO− an-
ions (Figure 2A). Notably, the appearance of a clear isosbestic point at λ = 525 nm was
consistent with an equilibrium existence of complexed and free QZ with CH3COO− anions
in the DMSO solution (Figure 2C). The significant changes in absorption intensity of QZ
after the addition of CH3COO− anions were also reflected by a sharp visual color change
from bright green to faint green under room light before and after the mixing of QZ with
CH3COO− anions (Figure 2A). Interestingly, similar absorption titration studies using
10 equiv. of other competing anions, such as F−, Cl−, I−, NO3

−, NO2
−, and H2PO4

−,
showed only little changes in the absorption spectra of QZ, and these results demonstrate
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that QZ can discriminatively and selectively bind with CH3COO− anions (Figure 2B). From
the electronic absorption titration profile, a perfect linear plot of 1/∆A vs. 1/[CH3COO−]
was obtained using the Benesi–Hildebrand equation and from the slope of this linear
plot; moreover, the association constant Ka for CH3COO− ion binding was determined to
be 7.63 × 103 M−1, which is comparable to already reported different optical sensors for
CH3COO− ions (Figure 2D) [26,35,50]. The high value of Ka indicates the strong binding
affinity of QZ for CH3COO− anions in the DMSO solution.
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3.2. Anion Sensing Using Fluorescence Titrations Studies

The anion-binding propensity of QZ was further monitored using fluorescence titra-
tion studies in the DMSO solution. The QZ sensor was highly emissive due to the presence
of emissive anthraquinone moiety and exhibited a broad emission band maximum at
λ = 562 nm, which was quenched drastically after the addition of increasing concentrations
of CH3COO− anions (0.0 to 10 equiv.) (Figure 3C). The observed attenuation in emis-
sion intensity after the anion addition was presumably due to the deprotonation of the
phenolic-OH group of QZ following CH3COO− interactions. This binding facilitates the
photoinduced electron transfer (PET) from O to π* orbitals of anthraquinone moiety that
results in the subsequent quenching of the fluorescence emission intensity (Scheme 1).
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Scheme 1. Proposed fluorescence quenching-based detection of CH3COO− through anion-induced
deprotonation of OH groups in QZ.

The proposed sensing mechanism of anion-induced deprotonation of phenolic-OH
groups of QZ following CH3COO− anion addition was further validated by pH-dependent
fluorescence titration studies in the DMSO solution. The fluorescence emission intensity
of QZ was checked under different pH levels from 3.5 to 11.5. As given in Figure S1, the
obtained results revealed that QZ is strongly emissive under acidic pH less than 5, and
the fluorescence emission intensity was found to decrease under basic pH up to 7. With
further increases in pH from 10 to 11.5, QZ was almost poorly emissive, presumably due to
the deprotonation of phenolic-OH groups under basic pH, which resulted in significant
fluorescence quenching of QZ due to the proposed PET transition from O to π* orbitals
of anthraquinone. We further performed computational calculations to probe the cyclic
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stability of QZ and support the proposed PET transition. The energy-minimized structure
of QZ verified that the proposed hydrogen-bonded cyclic structure is feasible and stable
(see Figure S2). Moreover, the highest-occupied molecular orbital (HOMO) of deprotonated
QZ2− was higher in energy than the lowest-unoccupied molecular orbital (LUMO) of the
QZ sensor, which confirms that the existence of the PET transition from O to π* orbitals
of anthraquinone causes the observed fluorescence quenching. A perfectly linear Stern–
Volmer plot was obtained from the fluorescence titration data, and the calculated Stern–
Volmer quenching constant was found to be KSV = 2.3 × 103 M−1. The high value of KSV,
again, confirms the strong binding affinity of QZ for CH3COO− anions (Figure 3D).

To establish the sensing selectivity of QZ towards CH3COO− ions, we performed
similar fluorescence titration studies using other competing anions, such as F−, Cl−, I−,
H2PO4

−, NO2
−, and NO3

−. As depicted in Figure 3A, only CH3COO− anions elicited
significant fluorescence quenching with no other spectral changes seen, whereas F−, Cl−,
I−, NO2

−, and NO3
− anions showed almost negligible fluorescence quenching effects.

Thus, QZ can be a selective ”turn-off” fluorescent sensor for CH3COO− anions. To further
corroborate the high selectivity, we carried out competitive fluorescence sensing studies on
other anions under the same experimental conditions. As shown in Figure 3B, the initial
fluorescence emission intensity (red bar) of QZ did not change (green bar) significantly after
the addition of different anions, such as F−, Cl−, I−, H2PO4

−, NO2
−, and NO3

−. However,
the subsequent mixing of CH3COO− anions exhibited a dramatic fluorescence quenching
(blue bar). These results further validated the high selectivity of QZ for CH3COO− anion
detection. It is worth mentioning that in the presence of H2PO4

−, CH3COO− anions
showed a moderate fluorescence quenching effect, which may be due to the possible
interference from H2PO4

− anions because of their similar basicity and charge density with
CH3COO− anions [50].

Gratifyingly, the observed selective sensing of CH3COO− anions was also clearly
visible to the naked eye. As shown in Figure 4A, the initial bright-orange color of QZ
changed to colorless after adding CH3COO− anions under UV light irradiation, and a
bright green solution changed to faint green under room light. However, no visible color
changes were observed for QZ in presence of other anions; thus, the fluorescent dye QZ
can be used as a colorimetric probe for CH3COO− ion detection. Moreover, we fabricated
a filter paper-based colorimetric sensor for the detection of CH3COO- ions. As depicted
in Figure 4B, the initial green emission of drop-casted QZ on filter paper changed to non-
fluorescent after mixing a drop of the CH3COO− solution; thus, QZ can be realized as a
suitable sensor for the detection of CH3COO− anions both in solution and solid phases.
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To meet the practical uses, the sensor must be reversible and fluorescence sensing
properties should be regenerable. To verify this, we carried out a fluorescence titration
experiment employing the polar solvent H2O as a potential competing solvent to establish
the reversibility of QZ for CH3COO− sensing. As seen in Figure 5A, the addition of H2O
can effectively protonate O- to form back the original OH groups, thereby leading to the
recovery of emission intensity of unbound QZ dye. The sensitivity of QZ was additionally
determined from the plot of changes in emission intensity as a function of CH3COO−

anions at minute concentrations (Figure 5B). From the plot, the limit of detection (LoD) was
determined to be 38 ppb, which is quite low for the detection of CH3COO− ions prevalent
in many chemical and biological systems.
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selectively recognize CH3COO− in presence of various other competing anions (F−, Cl−,
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−, and H2PO4

−). The initial emission intensity of QZ was remarkably
quenched upon the addition of CH3COO− ions, which was attributed to the deprotona-
tion of phenolic -OH groups of QZ following CH3COO− anion addition. Moreover, the
observed selective binding of CH3COO− anions was also reflected by sharp visual color
changes both in solution and solid phases. In summary, the CH3COO− anion sensing prop-
erties of the fluorescent dye QZ are comparable to several reported small-molecule-based
fluorescent sensors (see Table S1); hence, QZ can be a possible optical and colorimetric sen-
sor for the detection and quantification of CH3COO− anions. Further work is in progress
to functionalize QZ to make it a practically feasible water-soluble sensor for its application
in the chemosensing of biologically relevant and environmentally concerned analytes.
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