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Abstract. In order to understand the behaviour of a square matrix or a

bounded linear operator on a Banach space or more generally an element of a

Banach algebra, some subsets of the complex plane are associated with such

an object. Most popular among these sets is the spectrum σ(a) of an element

a in a complex unital Banach algebra A with unit 1 defined as follows:

σ(a) := {λ ∈ C : λ− a is not invertible inA}.

Here and also in what follows, we identify λ.1 with λ. Also quite popular is

Numerical range V (a) of a. This is defined as follows:

V (a) := {φ(a) : φ is a continuous linear functional on A satisfying ‖φ‖ = 1 = φ(1)}.

Then there are many generalizations, modifications, approximations etc. of

the spectrum. Let ε > 0 and n a nonnegative integer. These include ε− con-

dition spectrum σε(a), ε−pseudospectrum Λε(a) and (n, ε)−pseudospectrum

Λn,ε(a). These are defined as follows:

σε(a) := {λ ∈ C : ‖λ− a‖‖(λ− a)−1‖ ≥
1

ε
}

In this and the following definitions we follow the convention : ‖(λ−a)−1‖ =

∞ if λ− a is not invertible.

Λε(a) := {λ ∈ C : ‖(λ− a)−1‖ ≥
1

ε
}

Λn,ε(a) := {λ ∈ C : ‖(λ− a)−2n‖1/2
n
≥

1

ε
}

In this survey article, we shall review some basic properties of these sets,

relations among these sets and also discuss the effects of perturbations on

these sets and the question of determining the properties of the element a

from the knowledge of these sets.

1. Introduction

Problems about linear systems of equations formulated as operator equations,

approximate solutions of such equations, the eigen-value problems are some of the

important problems of Linear Algebra. In many practical situations it becomes

essential to pose these problems in an infinite dimensional setting. Functional

Analysis plays a vital role in analysis of such problems. In recent years, it has

been observed by some researchers such as Arveson, Bottcher and others that
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methods involving Banach algebra techniques can be quite useful in dealing with

such problems. For example, see the classical books [?], [?]. In particular, methods

of approximating an infinite dimensional problem by a sequence of finite dimen-

sional problems, such as a finite section method, work very well in case of certain

operators and fail dramatically in case of certain other operators. It was pointed

out by Arveson [?] that a success or failure of such a method depends on whether

the operator under consideration belongs to a particular Banach algebra. It also

turns out that many problems in Analysis, Operator theory and Numerical Analy-

sis are equivalent to the problem of determining whether a particular element in a

suitably chosen Banach algebra is invertible or not.(See [?]) For example, whether

a given bounded linear operator on a Banach space is a Fredholm operator or not

is equivalent to whether the corresponding element in a quotient algebra (known

as Calkin algebra) is invertible or not. Similar equvivalence can be established

between the problem of determining whether some approximation method works

or not and the problem of determining the invertiblity of an associated element in

a Banach algebra.

Closely related to the problem of invertiblity of an element of a Banach algebra

is the concept of spectrum. The spectrum is a very useful concept in several

applications. In concrete cases, it has well known interpretations such as spectrum

of a square matrix or spectrum of an operator. Thus computation of the spectrum

of an element is an important task. On the other hand, it is well known that the

map a 7→ σ(a), that takes an element a of a Banach algebra A to its spectrum

σ(a), is not continuous in general. There are many examples in the literature

to demonstrate this. In particular, if T is a bounded linear operator defined on

a separable Hilbert space H with an orthonormal basis {ej}, then the spectrum

σ(T ) of T depends discontinuously on the matrix entries 〈Tej , ei〉. We have given

one such example (See Example ??).

In order to overcome this difficulty of discontinuity, the researchers have sug-

gested computation of some other sets than the spectrum, though the main ob-

jective may be the computation of the spectrum. The basic idea is that these sets

should on the one hand provide approximation of the spectrum in some sense and

at the same time should depend continuously on the elements under consideration

at least in many cases of practical interest.

In the next six sections, we review the basic properties and some examples of

these six sets, namely, Spectrum(Section 2), Ransford spectrum(Section 3), Nu-

merical Range(Section 4), Condition spectrum(Section 5), ε-pseudospectrum(Section

6) and (n, ε)-pseudospectrum(Section 7). We also disccuss some relations among

these sets. Section 8 deals with the question of stability of these sets. Finally

in the last section we make a passing mention of some results about these sets
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without going into a detailed discussion. In general, proofs are not given, but

references where these proofs can be found are cited.

We shall use the following notations throughout this article. Let

B(w, r) := {z ∈ C : |z −w| < r}, the open disc with the centre at w and radius r,

D(z0, r) := {z ∈ C : |z − z0| ≤ r}, the closed disc with the centre at w and radius

r,

A+D(0, r) =
⋃
a∈A

D(a; r) for A ⊆ C and d(z,K) = inf{|z − k| : k ∈ K}, the dis-

tance between a complex number z and a closed set K ⊆ C.

Let δΩ denote the boundary of a set Ω ⊆ C.

Cn×n denotes the space of square matrices of order n and B(X) denotes the set

of bounded linear operators on a Banach space X.

2. Spectrum

We shall review some basic concepts about spectrum in this section. Since our

main objects of study are spectra of elements in a Banach algebra, we shall begin

with some definitions related to a Banach algebra.

Definition 2.1. Complex Algebra: A complex algebra A is a ring that is also

a complex vector space such that

(αa)b = α(ab) = a(αb) for all a, b ∈ A, α ∈ C

A is called commutative if ab = ba for all a, b ∈ A.

We shall assume that A has a unit element 1 satisfying 1a = a = a1 for all

a ∈ A. It is well known that when such a unit element exists, it is unique.

We need the following concepts.

Definition 2.2. Invertibility Let A be a complex algebra with the unit element

1. An element a ∈ A is said to be invertible in A if there exists b ∈ A such that

ab = 1 = ba. Such an element b is called inverse of a. Also a ∈ A is said to be left

invertible in A if there exists b ∈ A such that ba = 1. Such an element b is called a

left inverse of a. Similarly, a ∈ A is said to be right invertible in A if there exists

c ∈ A such that ac = 1. Such an element c is called a right inverse of a.

Remark 2.3. It is well known that if a ∈ A is invertible, then it has a unique

inverse and we shall denote it by a−1. On the other hand, left or right inverse,

even if exists, need not be ubique.

Definition 2.4. Banach Algebra: Let A be a complex algebra. An algebra

norm on A is a function ‖.‖ : A→ R satisfying:

(1) ‖a‖ ≥ 0 for all a ∈ A and ‖a‖ = 0 if and only if a = 0.
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(2) ‖αa‖ = |α|‖a‖ for all a ∈ A and α ∈ R
(3) ‖a+ b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ A.

(4) ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.

A complex normed algebra is a complex algebra A with an algebra norm defined

on it. A Banach algebra is a complete normed algebra.

We shall assume that A is unital, that is A has unit 1 with ‖1‖ = 1.

Example 2.5. Let X be a compact Hausdorff space, and let C(X) denote the set

of all complex valued continuous functions on X. Then C(X) is a commutative

Banach algebra under pointwise operations and the sup norm given by

‖f‖ := sup{|f(x)| : x ∈ X}, f ∈ C(X)

Example 2.6. Let H be a complex Hilbert space and let BL(H) denote the set of

all bounded(continuous) linear operators on H. Then BL(H) is a Banach algebra

under the usual operations and the operator norm given by

‖T‖ := sup{‖T (x)‖ : x ∈ H, ‖x‖ ≤ 1}, T ∈ BL(H)

When H is of dimension n, BL(H) can be identified with Cn×n, the algebra of

all matrices of order n× n with complex entries.

More examples and basic theory of Banach algebras can be found in the follow-

ing books [?], [?].

Definition 2.7. Spectrum: Let A be a complex Banach algebra with unit 1. For

λ ∈ C, λ.1 is identified with λ. Let Inv(A) = {x ∈ A : x is invertible in A} and

Sing(A) = {x ∈ A : x is not invertible in A}. The spectrum of an element a ∈ A is

defined as:

σ(a) := {λ ∈ C : λ− a ∈ Sing(A)}

The spectral radius of an element a is defined as:

r(a) := sup{|λ| : λ ∈ σ(a)}

The complement of the spectrum of an element a is called the resolvent set of a

and is denoted by ρ(a).

Thus when A = C(X) and f ∈ A, σ(f) coincides with the range of f .

Similarly when A = Cn×n and M ∈ A, σ(M) is the set of all eigenvalues of A.

We recall a few well known properties of the spectrum in the following theorem.

Theorem 2.8. Let A be a complex Banach algebra with unit 1 and let a ∈ A.

Then
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(1) σ(a) is a nonempty compact subset of C .

(2) The Spectral Radius Formula:

r(a) = lim
n→∞

‖an‖1/n

(3) The map a→ σ(a) is upper semicontinuous.

A proof of this theorem can be found in [?].

3. Ransford spectrum

The idea of spectrum has undergone many genrealizations. Ransford [?] gave a

unified approach to many of these generalizations of spectrum. Though Ransford

studied this in the setting of a Banach space, we shall confine our discussion to a

complex Banach algebra A with unit 1.

Let A be a complex Banach algebra with unit 1. Let Inv(A) denote the set of

all invertible elements in A. Then, for each a ∈ A,

σ(a) = {λ ∈ C : λ1− a /∈ Inv(A)}
Note that the set Inv(A) has the following properties.

(1) 1 ∈ Inv(A).

(2) 0 /∈ Inv(A).

(3) If a ∈ Inv(A) and λ 6= 0, then λa ∈ Inv(A).

(4) Inv(A) is an open subset of A.

One way of generalizing the idea of the spectrum is to replace the set Inv(A) by

some other set preferably having some of these properties. Thus the Exponential

spectrum arises in this way. In place of Inv(A) we consider

exp(A) := {exp(a) : a ∈ A}
Then for a ∈ A, the exponential spectrum σexp(a) is defined by

σexp(a) := {λ ∈ C : λ1− a /∈ exp(A)}
Note that in general

σ(a) ⊆ σexp(a).

Definition 3.1. Ransford set Let A be a complex Banach algebra with unit 1.

An open subset Ω of A satisfying the following properties is called a Ransford

set.

(1) 1 ∈ Ω.

(2) 0 /∈ Ω.

(3) If a ∈ Ω and λ 6= 0, then λa ∈ Ω.

Note that Inv(A) and exp(A) are Ransford sets.

Definition 3.2. Ransford spectrum let a ∈ A and Ω be a Ransford set. Then

the Ransford spectrum of a with respect to the Ransford set Ω is defined as follows:
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σΩ(a) = {λ ∈ C : λ1− a /∈ Ω} .

Note that Inv(A) is a Ransford set and the usual spectrum σ(a) is nothing but

σInv(A)(a), that is, Ransford spectrum with respect to the Ransford set Inv(A),

in this notation. Similar comments hold about exp(A) and exponential spectrum.

For this spectrum, Ransford proved the following properties.

Theorem 3.3. (1) σΩ(0) = {0} and σΩ(1) = {1}
(2) If for a ∈ A, σΩ(a) 6= ∅, then σΩ(a) is compact

(3) Let E := {a ∈ A : σΩ(a) 6= ∅}. Then the map a → σΩ(a) is an upper

semicontinuous function from E to compact subsets of C.

A proof of this theorem as well as several properties of Ransford spectrum

can be found in Ransford’s article cited above. Subsequent studies of Ransford

spectrum can be found in [?], [?].

4. Numerical Range

Definition 4.1. Numerical Range Let A be a Banach algebra and a ∈ A. The

numerical range of a is defined by

V (a) := {f(a) : f ∈ A′, f(1) = 1 = ‖f‖},

where A′ denotes the dual space of A.

The numerical radius ν(a) is defined as

ν(a) := sup{|λ| : λ ∈ V (a)}

Let A be a Banach algebra and a ∈ A. Then a is said to be Hermitian if

V (a) ⊆ R.

Definition 4.2. Spatial Numerical Range

Let X be a Banach space and T ∈ B(X). Let X
′

denote the dual space of X.

The spatial numerical range of T is defined by

W (T ) = {f(Tx) : f ∈ X
′
, ‖f‖ = f(x) = 1 = ‖x‖}.

For an operator T on a Banach space X, the spatial numerical range W (T )

and the numerical range V (T ), where T is regarded as an element of the Banach

algebra B(X), are related by the following:

CoW (T ) = V (T )

where CoE denotes the closure of the convex hull of E ⊆ C.

The following theorem gives the relation between the spectrum and numerical

range.
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Theorem 4.3. Let A be a Banach algebra and a ∈ A.

Then the numerical range V (a) is a closed convex set containing σ(a). Thus

Co(σ(a)) ⊆ V (a). Hence

r(a) ≤ ν(a) ≤ ‖a‖ ≤ eν(a).

A proof of this can be found in [?].

5. Condition spectrum

Next we discuss one more such extension in terms of the condition number.

Definition 5.1. Condition Number Let A be a complex Banach algebra with

unit 1. The condition number of an invertible element a ∈ A is defined as ‖a‖‖a−1‖
and denoted by κ(a). It is convenient to make a convention that κ(a) =∞ if a is

not invertible.

We shall use this convention through out. The condition number is a very useful

concept and arises naturally in solving a system of equations. Specifically it is a

measure of the sensitivity of the answer to a problem to small changes in the initial

data of the problem.

For a fixed 0 < ε < 1, define

Ωε :=

{
a ∈ Inv(A) : κ(a) <

1

ε

}
.

As 0 is not invertible, 0 /∈ Ωε, also 1 ∈ Ωε, since ‖1‖
∥∥1−1

∥∥=1. Note that

‖a‖
∥∥a−1

∥∥ = ‖za‖
∥∥(za)−1

∥∥ ,∀z ∈ C \ {0}

and this proves that if a ∈ Ωε and λ 6= 0, then λa ∈ Ωε. The map a→ ‖a‖
∥∥a−1

∥∥
is continuous and hence Ωε is an open set. These observations prove that Ωε is a

Ransford set.

Definition 5.2. Condition spectrum

Let 0 < ε < 1. The ε-condition spectrum of a for this ε is defined by

σε(a) := {λ ∈ C : λ1− a /∈ Ωε}

=

{
λ ∈ C : κ(λ1− a) ≥ 1

ε

}
with the convention that κ(λ1 − a) = ∞ when λ − a is not invertible. Condition

spectral radius rε(a) is defined by

rε(a) := sup{|z| : z ∈ σε(a)}.
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This condition spectrum was defined for the first time in [?]. Suppose X is a

Banach space, T : X → X is a bounded linear map and y ∈ X. Consider the

operator equation

Tx− λx = y

Then

• λ /∈ σ(T ) implies that this operator equation is solvable

• λ /∈ σε(T ) implies that this operator equation has a stable solution.

In view of this, the ε-condition spectrum is expected to be a useful tool in numerical

solutions of operator equations.

Next we give a few elementary properties of the condition spectrum.

Theorem 5.3. Let A be a complex Banach algebra with unit 1.

(1) σε(0) = {0} and σε(1) = {1}.
(2) If 0 < ε1 < ε2 < 1, then σε1(a) ⊆ σε2(a) for every a ∈ A
(3) σ(a) ⊆ σε(a) for every a ∈ A. In fact

σ(a) =
⋂

0<ε<1

σε(a)

(4) σε(a) is a non empty compact subset of C for every a ∈ A
(5) The map a→ σε(a) is an upper semi continuous function from A to com-

pact subsets of C.

A proof can be found in [?]

Next, we shall see a few examples.

Example 5.4. Diagonal matrix

Let λ1, λ2 ∈ C with λ1 6= λ2 and let M =

[
λ1 0

0 λ2

]
. Then

‖M − λI‖ = max{|λ− λ1| , |λ− λ2|}∥∥(M − λI)−1
∥∥ = max

{
1

|λ− λ1|
,

1

|λ− λ2|

}
.

Hence

σε(M) =

{
λ :
|λ− λ1|
|λ− λ2|

≥ 1

ε

}
∪
{
λ :
|λ− λ2|
|λ− λ1|

≥ 1

ε

}
.

Example 5.5. Triangular matrix

Let R : C2 → C2 defined as R(x, y) = (0, x) for all (x, y) in C2 (truncation of

right shift operator). Considering R as an operator on C2 we get

‖R− λI‖1 = ‖R− λ‖∞ = 1 + |λ|∥∥(R− λI)−1
∥∥

1
=
∥∥(R− λ)−1

∥∥
∞ =

1

|λ|
+

1

|λ|2
.
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Hence in both (C2, ‖ ‖1) and (C2, ‖ ‖∞)

σε(R) =

{
λ : |λ| ≤

√
ε

1−
√
ε

}
.

Example 5.6. Right shift operator

Let R be the right shift operator on `p where p = 1 or ∞. We can show

‖R− λI‖1 = ‖R− λI‖∞ = |λ|+ 1.

For |λ| > 1 (R− λI)−1 exists and∥∥(R− λI)−1
∥∥

1
=
∥∥(R− λI)−1

∥∥
∞ =

1

|λ| − 1
.

It is known that σ(R) = {λ : |λ| ≤ 1} Also we can show

σε(R) =

{
λ : |λ| ≤ 1 + ε

1− ε

}
.

In the next theorem, we list some more properties of the condition spectrum.

Theorem 5.7. Let A be a complex unital Banach algebra, a ∈ A and 0 < ε < 1.

(1) Suppose a 6= λ for every λ ∈ C. Then σε(a) has no isolated points.

(2) If a is not a scalar multiple of the identity, then for each λ0 ∈ σ(a), there

exist r > 0 such that D(λ0, r) ⊆ σε(a). In particular, σ(a) $ σε(a).

(3) If σε(a) = σ(a) then a = λ0 for some λ0 ∈ C.

(4) σε(a) has a finite number of components and every component of σε(a)

contains an element from σ(a).

(5) If M ∈ Cn×n and σε(M) has n components, then M is diagonalizable.

For a proof, see [?]

Corollary 5.8. If σε(a) = {λ0} for some λ0 ∈ C, then a = λ0.

Remark 5.9. A very well known classical problem in operator theory known as

“T = I?” problem, asks the following question: Let T be an operator on a Banach

space. Suppose σ(T ) = {1}. Under what additional conditions can we conclude

T = I?

From the above corollary it follows that if σε(T ) = {1} then T = I. In other

words if we replace spectrum by ε-condition spectrum in the “T = I” problem,

then no additional conditions are required.

Remark 5.10. Numerical Range and condition spectrum are related as follows:

Let A be a complex unital Banach algebra. Let a ∈ A.

If λ ∈ σε(a), then we can prove that

d(λ, V (a)) ≤ ε‖λ− a‖

A proof can be found in [?]

9



6. Pseudospectrum

We now discuss yet another important and popular set related to the spectrum,

namely pseudospectrum. We begin with its definition.

Definition 6.1. Pseudospectrum Let A be a complex Banach algebra, a ∈ A
and ε > 0. The ε-pseudospectrum Λε(a) of a is defined by

Λε(a) := {λ ∈ C : ‖(λ− a)−1‖ ≥ ε−1}

with the convention that ‖(λ− a)−1‖ =∞ if λ− a is not invertible.

This definition and many results in this section can be found in [?]. The book [?]

is a standard reference on Pseudospectrum. It contains a good amount of informa-

tion about the idea of pseudospectrum, (especially in the context of matrices and

operators), historical remarks and applications to various fields. Another useful

source is the website [?].

Remark 6.2. Other definitions

Some authors, in particular, Trefethen, have defined the following set as the

ε-pseudospectrum of a:

Λ∗ε (a) := {λ ∈ C : ‖(λ− a)−1‖ > ε−1}.

There are some significant changes in these two definitions.

(1) Λε(a) is a compact subset of C whereas Λ∗ε (a) is not.

(2) The map ε 7→ Λε(a) is right continuous but the map ε 7→ Λ∗ε (a) is not.

In the case of most of the other results about Λε(a), our methods can be easily

modified to obtain analogous results for Λ∗ε (a). In general, Λε(a) is not the closure

of Λ∗ε (a).

However, this is true in many cases. We shall see some information about this

later.

One reason given by some authors for accepting Λ∗ε (a) as the definition of pseu-

dospectrum is that if T is a bounded operator on a Banach space, then

Λ∗ε (T ) =
⋃
‖S‖<ε

σ(T + S).

However, this is not the case for an arbitrary element of a Banach algebra (We

shall see such an example ).

A more detailed discussion on these two ways of defining pseudospectrum can

be found in [?]

The following theorem gives some elementary properties of the pseudospectrum.

Theorem 6.3. Let A be a complex Banach algebra. Then

(1) Λε(a) is a non-empty compact subset of C (a ∈ A, ε > 0).
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(2) σ(a) =
⋂
ε>0

Λε(a) (a ∈ A).

(3) Λε1(a) ⊂ Λε2(a) (a ∈ A, 0 < ε1 < ε2).

(4) Λε(a+ λ) = λ+ Λε(a) (λ ∈ C).

(5) Λε(λa) = λΛ ε
|λ|

(a) (a ∈ A, λ ∈ C \ {0}, ε > 0).

(6) Λε(a) ⊆ D(0; ‖a‖+ ε) (a ∈ A, ε > 0).

(7) Λε(a+ b) ⊆ Λε+‖b‖(a) (a, b ∈ A, ε > 0).

(8) σ(a+ b) ⊆ Λε(a) (a, b ∈ A, ε > 0, ‖b‖ ≤ ε), i.e.
⋃
‖b‖≤ε

σ(a+ b) ⊆ Λε(a).

(9) Λε(a) +D(0; δ) ⊆ Λε+δ(a).

A proof can be found in [?]

The inclusion in (8) of the above Theorem can be proper. Consider the following

example:

Example 6.4. Let A = {a ∈ C2×2 : a =

[
α β

0 α

]
} with norm given by ‖a‖ =

|α|+ |β|. Then A is a Banach algebra. Let a =

[
0 1

0 0

]
. Then it can be verified

that ⋃
‖b‖≤1

σ(a+ b) = D(0; 1)

which is properly contained in

Λ1(a) = {λ ∈ C : |λ|(|λ| − 1) ≤ 1} = D(0; (
1 +
√

5

2
)).

Next, we consider the question of reverse inclusion in (8) of the above Theorem

.

Lemma 6.5. Suppose A is a complex Banach algebra with the following property:

∀a ∈ Inv(A), ∃b ∈ Sing(A) such that ‖a− b‖ =
1

‖a−1‖
. (1)

Then ∀a ∈ A and λ ∈ Λε(a), ∃b ∈ A such that ‖b‖ ≤ ε and λ ∈ σ(a+ b).

A proof can be found in [?]

Examples of Banach algebras that satisfy the hypothesis of the above Lemma

can be found in [?]. These include the algebras C(X), for a compact Hausdorff

space X, and Cn×n ∀n ∈ N. In fact, all C∗ algebras satisfy the hypothesis as given

below.

Theorem 6.6. If A is a C∗ algebra, and a ∈ Inv(A), then ∃b ∈ Sing(A) such that

‖a− b‖ = 1
‖a−1‖ .

Next, we consider an example of a Banach algebra in which this condition does

not hold.
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Example 6.7. Consider A as in the Example ?? above. Let a =

[
1 1

0 1

]
. Then

we claim that

b ∈ A, ‖a− b‖ =
1

‖a−1‖
⇒ b ∈ Inv(A).

For the given a, a−1 =

[
1 −1

0 1

]
and ‖a−1‖ = 2. Any b ∈ A is of the form[

α β

0 α

]
and b is invertible iff α 6= 0. Then ‖a − b‖ = |1 − α| + |1 − β|. If

‖a− b‖ = 1
‖a−1‖ , i.e., |1− α|+ |1− β| = 1

2 , then α 6= 0. Hence b is invertible.

Corollary 6.8. Let A be a complex Banach algebra satisfying the hypothesis of

Lemma ?? and a ∈ A. Then

λ ∈ Λε(a)⇔ ∃b ∈ A with ‖b‖ ≤ ε such that λ ∈ σ(a+ b).

Thus

Λε(a) =
⋃
‖b‖≤ε

σ(a+ b).

The following theorems establish the relationships between the spectrum, the

ε-pseudospectrum and the numerical range of an element of a Banach algebra.

Theorem 6.9. Let A be a Banach algebra, a ∈ A and ε > 0. Then

d(λ, V (a)) ≤ 1

‖(λ− a)−1‖
≤ d(λ, σ(a)) ∀λ ∈ C \ σ(a). (2)

Thus

σ(a) +D(0; ε) ⊆ Λε(a) ⊆ V (a) +D(0; ε). (3)

Next we consider the question of equality in some of these inclusions.

Definition 6.10. Let A be a Banach algebra and a ∈ A. We define a to be of

G1-class if

‖(z − a)−1‖ =
1

d(z, σ(a))
∀z ∈ C \ σ(a). (4)

The following lemma is elementary.

Lemma 6.11. Let A be a Banach algebra and a ∈ A. Then

Λε(a) = σ(a) +D(0; ε) ∀ε > 0 (5)

iff a is of G1-class.
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Remark 6.12. The idea of G1-class is due to Putnam who defined it for operators

on Hilbert spaces. (See [?],[?].) It is known that the G1-class properly contains the

class of seminormal operators (TT ∗ ≤ T ∗T or T ∗T ≤ TT ∗) and this class properly

contains the class of normal operators. Using Gelfand- Naimark theorem, we can

make similar statements about elements in a C∗ algebra.

In the finite dimensional case, G1 operators are normal.

Also it is easy to see that every element in a uniform algebra is of G1-class.

In particular, normal elements are hyponormal. In general, the equation (5)

may hold, for every ε > 0, for an element of a C∗-algebra even though it is not

normal.

Consider the right shift operator R on `2(N). It is not normal but Λε(R) =

σ(R) +D(0; ε) = D(0; 1 + ε)∀ε > 0. R is, however, a hyponormal operator.

The following theorem shows that the numerical range V (a) of a is determined

by certain closed half-planes related to the pseudospectrum Λε(a).

Theorem 6.13. Let A be a Banach algebra, a ∈ A and ε > 0. If H is a closed

half-plane in C such that

Λε(a) ⊆ H +D(0; ε) ∀ε > 0. (6)

Then V (a) ⊆ H.

A proof can be found in [?]

The following corollary gives an equivalent condition in terms of the ε-pseudospectrum

for an element of a Banach algebra to be Hermitian.

Corollary 6.14. Let A be a Banach algebra and a ∈ A. Then a is Hermitian iff

Λε(a) ⊆ {z ∈ C : |Im z| ≤ ε} ∀ε > 0. (7)

The numerical range of an element of a Banach algebra is a compact convex

subset of C containing its spectrum, and hence it also contains the closure of the

convex hull of the spectrum. In some cases, as given below, the equality holds.

Corollary 6.15. Let A be a Banach algebra and a ∈ A. Suppose a is of G1-class.

Then V (a) = Co σ(a) and ‖a‖ ≤ e r(a).

Following is an interesting theorem that is a consequence of the above consid-

erations.

Theorem 6.16. Let A be a Banach algebra. Suppose a is of G1-class for every a ∈
A. Then A is commutative, semisimple and hence isomorphic and homeomorphic

to a function algebra.
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Proof. By the above result, ‖a‖ ≤ er(a)∀a ∈ A. Hence A is commutative by a

theorem of Hirschfeld and Zelazko [?]. Also, the condition ‖a‖ ≤ er(a)∀a ∈ A

implies that A is semisimple. �

Next two propositions give relationship between condition spectrum and pseu-

dospectrum of an element in a complex unital Banach algebra. Their proofs are

elementary and can be found in [?].

Proposition 6.17. Let A be a complex Banach algebra with unit 1, a ∈ A and

0 < ε < 1. Then σε(a) ⊆ Λ 2ε‖a‖
1−ε

(a).

Proposition 6.18. Let A be a complex Banach algebra with unit 1 and ε > 0.

Suppose a ∈ A is not a scalar multiple of 1 and let

M := inf{‖λ− a‖ : λ ∈ C}. Then Λε(a) ⊆ σ ε
M

(a).

Remark 6.19. If a = µ.1 for some µ ∈ C, then ε-condition spectrum of a is the

singleton set {µ} and ε-pseudospectrum is the closed ball with centre µ and radius

ε. Thus the condition on a can not be dropped from the above proposition.

The following theorem involves the analytical functional calculus for elements

of a Banach algebra.

Theorem 6.20. Let A be a Banach algebra and a ∈ A. Let Ω ⊆ C be an open

neighbourhood of Λε(a) and Γ be a contour that surrounds Λε(a) in Ω. Let f be

analytic in Ω. We recall the definition of f̃(a) in the analytical functional calculus

as

f̃(a) =
1

2πi

∫
Γ

(z − a)−1f(z)dz (8)

Then

‖f̃(a)‖ ≤ Ml

2πε
(9)

where l = length of Γ and M = sup{|f(z)| : z ∈ Γ}.

The following corollary gives an equivalent condition in terms of the ε-pseudospectrum

for an element of a Banach algebra to be a scalar (i.e. a scalar multiple of the

identity).

Corollary 6.21. Let A be a Banach algebra, a ∈ A and µ ∈ C. Then

a = µ⇔ Λε(a) = D(µ, ε) ∀ε > 0.

Proof. If a = µ, it is trivial to see that Λε(A) = D(µ, ε) ∀ε > 0. For the converse

part, by (4) of Theorem ??, we may assume that µ = 0. Let f(z) = z and

Γ = {z ∈ C : |z| = ε}. Then, with the notations of the above Theorem , M = ε

and l = 2πε. Hence by the above Theorem , ‖a‖ ≤ ε. Since this is true ∀ε > 0,

a = 0 = µ. �
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The following corollary gives an equivalent condition in terms of the ε-pseudospectrum

for an element of a Banach algebra to be a Hermitian idempotent.

Corollary 6.22. Let A be a Banach algebra and a ∈ A. Then

Λε(a) = D(0; ε) ∪D(1; ε) ∀ε > 0 (10)

if and only if a is a non-trivial(that is, different from 0 and 1) Hermitian idempo-

tent and ‖a‖ = 1.

Next we consider some topological properties of the ε-pseudospectrum of an

element of a Banach algebra, namely that the ε-pseudospectrum has no isolated

points, and that it has a finite number of components.

Theorem 6.23. Let A be a Banach algebra, a ∈ A and ε > 0. Then the ε-

pseudospectrum Λε(a) of a has no isolated points. Also the ε-pseudospectrum Λε(a)

of a has a finite number of components and each component of Λε(a) contains an

element of σ(a).

See [?] for a proof.

The above Theorem helps to determine certain properties of a matrix when its

ε-pseudospectrum is known.

Corollary 6.24. Let M ∈ Cn×n and ε > 0.

(1) If Λε(M) has n components, then M is diagonalizable.

(2) If each of these components is a disc of radius ε and ‖ · ‖ = ‖ · ‖2 then M

is normal.

(3) If ‖ · ‖ = ‖ · ‖2, then Λε(M) = D(µ; ε) iff M = µI.

(4) If ‖ · ‖ = ‖ · ‖2, then Λε(M) = D(0; ε) ∪ D(1; ε) iff M is a non-trivial

orthogonal projection.

7. (n, ε)-pseudospectrum

In this section, we discuss one more set related to the spectrum that is very

important from the point of view of approximation of the spectrum. It is defined

as follows.

Definition 7.1. Let A be a unital Banach algebra, a ∈ A, ε > 0 and n a nonneg-

ative integer. The (n, ε)-pseudospectrum of a is defined by

Λn,ε(a) := σ(a) ∪ {λ /∈ σ(a) : ‖(λ− a)−2n‖1/2
n

≥ 1

ε
}.
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This set was first introduced by Hansen [?, ?] for the operators on a Hilbert

space. This idea was extended to cover the operators on Banach spaces by Seidel[?].

It was further extended for an element in a Banach algebra and more investigations

were carried out in [?, ?]

The following functions γn are quite useful in describing and proving properties

of (n, ε)− pseudospectrum.

Definition 7.2. Let A be a unital Banach algebra, a ∈ A, ε > 0, z ∈ C and n a

nonnegative integer. The functions γn and γ are defined as follows:

γn(a, z) := ‖(z − a)−2n‖−1/2n if z /∈ σ(a)

and = 0 if z ∈ σ(a).

γ(a, z) := d(z, σ(a)).

First note that

Λn,ε(a) := {λ ∈ C : γn(a, λ) ≤ ε}.

We observe that the (0, ε)-pseudospectrum is nothing but the usual ε-pseudospectrum.

Also, for a normal element in a C∗ algebra, we have Λn,ε(a) = Λε(a) = σ(a) +

D(0, ε) for all n.

The following theorem provides some elementary properties of the (n, ε)-pseudospectrum.

Its proof is given in [?].

Theorem 7.3. Let A be a Banach algebra, a, b ∈ A, n a nonnegative integer and

ε > 0. Then the following statements hold:

(1) Λn,ε(λ) = D(λ, ε) ∀λ ∈ C.

(2) Λn+1,ε(a) ⊆ Λn,ε(a).

(3) σ(a) = ∩
ε>0

Λn,ε(a).

(4) Λn,ε1(a) ⊆ Λn,ε2(a) for 0 < ε1 < ε2.

(5) Λn,ε(a+ λ) = λ+ Λn,ε(a) for λ ∈ C.

(6) Λn,ε(λa) = λΛn, ε|λ| (a) for λ ∈ C \ {0}.

(7) Λn,ε(a) ⊆ D(0, ‖a‖+ ε).

Further, if a is invertible and 0 < ε < 1
‖a−1‖ , then

Λn,ε(a) ⊆ {z ∈ C :
1

‖a−1‖
− ε ≤ |z| ≤ ‖a‖+ ε}.

(8) Λn,ε(a) is a non-empty compact subset of C.

The following theorem says that Λn,ε(a) is an approximation of an ε-neighborhood

of the σ(a) for large values of n. Thus if we have a good method of computing
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Λn,ε(a), then we can get information about σ(a). This aspect of computing (n, ε)-

pseudospectrum is discussed by Hansen for bounded operators on a separable

Hilbert space. This involves the use of the functions γn.

Theorem 7.4. Let A be a Banach algebra, a ∈ A and ε > 0. Then

σ(a) +D(0, ε) = ∩
n∈Z+

Λn,ε(a).

Further, dH(Λn,ε(a), σ(a) +D(0; ε))→ 0 as n→∞.

A prooof can be found in [?]. The following theorem gives another way of

looking at this approximation.

Theorem 7.5. Let A be a Banach algebra, a ∈ A. Then for 0 < ε < η, there

exists n0 ∈ N such that for all n ≥ n0,

σ(a) +D(0, ε) ⊆ Λn,ε(a) ⊆ σ(a) +D(0, η)

A prooof can be found in [?].

The inclusion σ(a) + D(0, ε) ⊆ Λn,ε(a) can be proper. We give an example

below.

Example 7.6. Let the Banach algebra A and an element a ∈ A be as in the

Example ??. Then it can be shown that there exists λ ∈ Λn,ε(a) but λ /∈ σ(a) +

D(0, ε). See [?] for details.

We now introduce a class of elements that have some special properties with

respect to the spectrum and (n, ε)-pseudospectrum.

Definition 7.7. Let A be a unital Banach algebra and n a non-negative integer.

An element a ∈ A is said to be of Gn -class if

‖(λ− a)−2n−1

‖1/2
n−1

=
1

d(λ, σ(a))
∀λ /∈ σ(a).

This means γn−1(a, λ) = d(λ, σ(a) =: γ(λ, a) for all λ ∈ C.

It follows from the definition that a is of Gn -class iff Λn−1,ε(a) = σ(a) +

D(0, ε) ∀ε > 0. For n = 1, the above definition coincides with the familiar defini-

tion of G1-class .

In the algebra A of the above Example ??, b =
( x y

0 x

)
∈ Gn iff y = 0.

Thus, in this algebra, G1 and Gn -class elements are the same for all n.

Note that

γn−1(a, z) ≤ γn(a, z) ≤ d(z, σ(a)) for all z ∈ C.

Hence Gn -class is contained in Gn+1 -class . Thus we find that if a is of Gn

-class, then ∀m ≥ n, Λm,ε(a) = σ(a) +D(0, ε) ∀ε > 0.
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The inclusion Gn ⊆ Gn+1 can be proper. An example to support this claim can

be found in [?].

The following theorem gives a characterization of scalar elements in a Banach

algebra in terms of its (n, ε)-pseudospectrum.

Theorem 7.8. Suppose A is a Banach algebra, a ∈ A and n a non-negative

integer. Then

a = λ ⇐⇒ Λn,ε(a) = D(λ, ε) ∀ε > 0.

A proof can be found in [?].

The next theorem gives some topological properties of (n, ε)-pseudospectrum.

Note that these are very similar to the corresponding properties of the pseudospec-

trum.

Theorem 7.9. Let A be a Banach algebra, a ∈ A, n ∈ Z+ and ε > 0. Then

(1) Λn,ε(a) has no isolated points

(2) Λn,ε(a) has a finite no of components and each component contains at least

one element of σ(a).

A proof is given in [?].

8. Stability of the spectrum and related sets

As we have already observed, the spectrum is a very useful concept in several

applications. In concrete cases, it has well known interpretations such as the spec-

trum of a square matrix or spectrum of an operator. Thus the computation of

the spectrum of an element is an important task. On the other hand, as observed

in the Introduction, it is well known that the map a 7→ σ(a) is not continuous

in general. There are many examples in the literature to demonstrate this. In

particular, if T is a bounded linear operator defined on a separable Hilbert space

H with an orthonormal basis {ej}, then the spectrum σ(T ) of T does not de-

pend continuously on the matrix entries 〈Tej , ei〉. We may consider the following

example given in [?]

Example 8.1. Let δ be a real number and let Tδ : `2(Z)→ `2(Z) be defined by

(Tδx)(n) = δx(n+ 1) if n = 0 and (Tδx)(n) = x(n+ 1) if n 6= 0 for x = {x(n)} ∈
`2(Z). Then it can be shown that for each δ 6= 0, the spectrum σ(Tδ) is the unit

circle {z ∈ C : |z| = 1} but for δ = 0, we have σ(T0) = {z ∈ C : |z| ≤ 1}, the

closed unit disc. On the other hand Tδ → T0 as δ → 0.

This situation is of concern to a numerical analyst because if one does compu-

tation of the spectrum of T0 on a computer, then due to round off and truncation

errors, one gets the solution of a slightly perturbed problem, that is the spectrum
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of Tδ for a small value of δ. But as the above example shows, this solution will be

quite away from the desired solution.

We discuss the stability of the other spectrum related sets beginning with the

Numerical range. Let us recall the following notation.

Let R+ = {x ∈ R : x > 0} and K(C) denote the set of compact subsets of C
equipped with the Hausdorff metric defined as

dH(Λ,∆) = max{sup
s∈Λ

d(s,∆), sup
t∈∆

d(t,Λ)}.

Theorem 8.2. Let A be a complex unital Banach algebra and a, b ∈ A. Then

dH(V (a), V (b)) ≤ ‖a − b‖. Thus the map a 7→ V (a) is continuous, in fact, uni-

formly continuous.

Proof. Let s ∈ V (a). Then s = f(a) for some f ∈ A′ with ‖f‖ = 1 = f(1). Then

f(b) ∈ V (b). Hence d(s, V (b)) ≤ |s − f(b)| = |f(a) − f(b)| ≤ ‖a − b‖. Similarly,

for every t ∈ V (b), we can show that d(t, V (a)) ≤ ‖a− b‖. �

Next we consider the question of stability of ε-pseudospectrum and (n, ε)-

pseudospectrum. Since ε-pseudospectrum is a special case of (n, ε)-pseudospectrum,

we shall only consider the results about (n, ε)-pseudospectrum. We begin with the

follwing important theorem.

Theorem 8.3. Let A be a complex unital Banach algebra. Then for a fixed element

a ∈ A, the map ε 7→ Λn,ε(a) is right continuous.

This is proved in [?]. This theorem says that the map is continuous whenever it

is left continuous. In the following theorem, we study some equivalent conditions

for (left) disconinuity of the map.

Theorem 8.4. Let A be a complex unital Banach algebra, a ∈ A, ε0 > 0 and n a

non-negative integer. Then the following statements are equivalent.

(1) The map ε 7→ Λn,ε(a) is left discontinuos at ε0.

(2) The level set {λ ∈ C : γn(a, λ) = ε0} contains a non-empty open set.

(3) The closure of the set {λ ∈ C : γn(a, λ) < ε0} is properly contained in the

set {λ ∈ C : γn(a, λ) ≤ ε0}.

This theorem is proved in [?]. The following theorem gives some equivalent

conditions for the contnuity of this map.

Theorem 8.5. Let A be a complex unital Banach algebra, a0 ∈ A, ε0 > 0 and n

a non-negative integer. Then the following statements are equivalent.

(1) The map ε 7→ Λn,ε(a) is continuos at ε0.

(2) The map a 7→ Λn,ε(a) is continuos at a0.
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(3) The map (ε, a) 7→ Λn,ε(a) is continuos at (ε0, a0) with respect to the metric

in the domain given by

‖(ε1, a1)− (ε2, a2)‖ = |ε1 − ε2|+ ‖a1 − a2‖

for all positive ε1, ε2 and a1, a2 ∈ A and the Hausdorff metric in the

codomain.

(4) The level set {λ ∈ C : γn(a0, λ) = ε0} does not contain any non-empty

open set.

(5) The closure of the set {λ ∈ C : γn(a0, λ) < ε0} is equal to the set {λ ∈ C :

γn(a0, λ) ≤ ε0}.

This is proved in [?]. Essentially this theorem says that the question of con-

tinuity of this map depends upon whether the level set {λ ∈ C : γn(a0, λ) = ε0}
contains any non-empty open set or not. A natural question here is what are the

examples of Banach algebras and elements in those Banach algebras where this

condition is satisfied. We shall need some definitions to answer that question.

Definition 8.6. A Banach space X is said to be complex uniformly convex if for

every ε > 0, ∃δ > 0 such that

x, y ∈ X, ‖y‖ ≥ ε and ‖x+ ζy‖ ≤ 1 ∀ζ ∈ C with |ζ| ≤ 1⇒ ‖x‖ ≤ 1− δ.

Note that all uniformly convex spaces are complex uniformly convex. Thus

Hilbert spaces and Lp spaces with 1 < p < ∞ are complex uniformly convex. It

is known that L1 is complex uniformly convex, though not uniformly convex (See

[?]). Also L∞ is not complex uniformly convex, but its dual (L∞)′ is (See [?]).

We can now answer the question raised in the last paragraph.

Theorem 8.7. Let A be a complex unital Banach algebra, a0 ∈ A, ε0 > 0 and n

a non-negative integer. Then one and hence all the conditions of Theorem ?? are

satisfied if any one of the following holds.

(1) a0 is of Gn+1-class.

(2) The resolvent set C \ σ(a0) is a connected subset of C.

(3) A = B(X) with X or its dual X ′ is complex uniformly convex.

A proof can be found in [?].

Remark 8.8. The above theroem helps in obtaining several examples of Banach

algebras and elements in those Banach algebras where the condition for continuity

of this map is satisfied. Let X be a Banach space and A = B(X). Let K be

a compact linear map on X. Then the spectrum σ(K) of K is a countable set,

hence its complement in C is connected. It follows by the above theorem that for

any non-negative integer n and any positive ε, the map T 7→ Λn,ε(T ) is continuous
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at K. In particular, this happens when X is finite dimensional. Also the map

T 7→ Λn,ε(T ) is continuous at every T ∈ B(X), when X is a Hilbert space or

X = Lp with 1 ≤ p ≤ ∞, because, in this case, X or its dual X ′ is complex

uniformly convex.

Next we give an example of a bounded linear operator T on a Banach space

X that does not satisfy any of the equivalent conditions given in Theorem ??. In

particular, the map S 7→ Λn,ε(S), S ∈ B(X) is not continuous at S = T .

Example 8.9. Let m be a non-negative integer, X = `∞(Z) with the norm defined

by

‖x‖ :=

m−1∑
k=0

|xk|+ sup{|xk| : k ∈ Z \ {0, . . . ,m− 1}, x ∈ X.

This norm is equivalent to the usual supnorm on X. However neither X nor

its dual X ′ is complex uniformly convex. Let M > 4. Define T : X → X

by (Tx)(k) = αkxk+1 where αk =
1

M
for k ∈ {0, . . . ,m − 1} and αk = 1 for

k ∈ Z \ {0, . . . ,m − 1}. Then it can be shown that there exists 0 < δ <
1

M
such that B(0, δ) ⊆ C \ σ(T ) and ‖(T − z)−m‖ = Mm for all z ∈ B(0, δ). The

details of this computation can be found in [?]. This shows that the level set

{λ ∈ C : γn(T, λ) = 1/M}, where m = 2n contains a non-empty open set B(0, δ).

This example was mentioned in [?].

The above example shows that, in general, the map a 7→ Λn,ε(a) may not be

continuos at a0. However this phenomenon of discontinuity can be controlled by

taking large values of n. This was first mentioned in [?]. The following theorem,

proved in [?] elaborates this idea.

Theorem 8.10. Let A be a complex unital Banach algebra, a ∈ A, ε0 > 0. Then

the following statements hold.

(1) For every η1 > 0, there exists n1 ∈ N such that dH(Λn,ε(a), σ(a) +

D(0, ε)) < η1 for all n ≥ n1 and all ε ≤ ε0. More precisely, σ(a)+D(0, ε) ⊆
Λn,ε(a) ⊆ σ(a) +D(0, ε+ η1)

(2) For every η2 > 0, there exists n2 ∈ N such that dH(Λn,ε1(a),Λn,ε2(a)) <

|ε1 − ε2|+ η2 for all n ≥ n2 and all ε1, ε2 ≤ ε0.

(3) For every 0 < η3 < ε0, there exists n3 ∈ N such that for all n ≥ n3, there

exists a δ(n) > 0 such that dH(Λn,ε1(a),Λn,ε2(b)) < |ε1 − ε2| + η3 for all

ε1, ε2 ∈ [
η3

4
, ε0] and all b ∈ A with ‖a− b‖ < δ(n).

Remark 8.11. It is natural to ask similar questions about the condition spectrum,

namely, what are the conditions for the continuity of the map a 7→ σε(a) or more

generally the map (ε, a) 7→ σε(a)? As of now, no satisfactory answers are available
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to these questions. Some work on the level sets associated with the condition

spectrum is reported in [?].

9. Concluding remarks

We shall conclude this survey by mentioning some results about the spectrum

related sets without any elaborate discussion of those results. One idea is to look

at some well known result about the spectrum and try to investigate what kind

of analogues hold in case of these other sets. For example, there are large number

of results in the literature on characterizing linear as well as nonlinear maps that

preserve spectrum or numerical range or some numbers related to these sets such

as spectral radius. Problems of this type are known as “Preserver Problems”. A

good account of such problems can be found in [?]. Some results about linear maps

preserving pseudospectrum and condition spectrum are given in [?]. Analogues of

the spectral mapping theorem for pseudospectrum and condition spectrum are

discussed in [?] and [?] respectively. If A is a complex Banach algebra with unit

1 and p is an idempotent element in a, then pAp is also a Banach algebra with

unit p. It is natural to investigate the relationship beteween the spectrum of

a as an element of A and the spectrum of pap as an element of pAp and also

similar questions about the other related sets. These are discussed in [?] and

[?]. Similar studies in case of (n, ε)-pseudospectrum are reported in [?]. Suppose

the elements a and b in a complex unital Banach algebra satisfy the following

condition: Λε(ax) = Λε(bx) for all x ∈ A. Then a = b in certain situations. These

are discussed in [?].

The problem of computing the spectrum of an element in a stable manner re-

mains a challenging and interesting problem. Any such computation will involve

computation of the functions γn(a, z). The methods of computing γn(T, z) ef-

fectively are known when T is a bounded operator on a separable Hilbert space.

These are based on computing the singular values of the finite sections of T . (See

[?], [?] for details). Some methods of computing these sets using Banach algebra

techniques are discussed in [?]. There are many issues involving computational

complexity of this problem. A very interesting discussion on these issues can be

found in [?].

In our discussion of stability of the spectrum and other sets in Section 8, we

have considered the topology given by the norm on the Banach algebra under

consideration and the Hausdorff metric on the subsets of the complex plane. When

the algebra is of bounded operators on a Banach or Hilbert space and when one

wants to discuss the approximation of the spectrum and related sets corresponding

to an operator T by similar sets corresponding to its finite dimensional truncations

Tn, one has to note that, in general, the sequence {Tn} does not converge to T in
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norm. Hence other topologies like strong operator topology have to be considered.

Also the notion of convergence of subsets of C needs to be changed. These ideas are

persued by Arveson [?] and also by Böttcher, Silbermann [?] and their coauthors

in different ways.

Arveson [?] has considered a sequence {Hn} of finite dimensional subspaces of

a Hilbert space H with some additional properties called filtration of H. He then

defines the degree of an operator with respect to such a filtration. An operator of

finite degree is a generalization of a band limited operator. It is then shown that

if a self-adjoint operator T can be expressed as a sum of operators of finite degree,

then some information about the essential spectrum of T can be obtained from

the spectra of Tn.

In Böttcher and Silbermann [?], a sequence {Tn} converging to T in the strong

operator topology is called stable if there exists a natural number n0 such that Tn is

invertible for all n ≥ n0 and sup{‖T−1
n ‖, n ≥ n0} is finite. They consider an algebra

F of bounded sequences {Tn} and the ideal I of those sequences {Tn} such that

{‖Tn‖} converges to 0. The by a classical theorem of Kozak [?], a sequence {Tn}
is stable if and only if the coset {Tn}+ I is invertible in the quotient algebra F/I.

Thus a question of stability becomes equivalent to a question of invertibility. This

is called the algebraization of stability and this technique is used to get information

about the spectra and pseudospectra of Toeplitz operators in [?].

In case of certain Banach algebras, their elements are naturally associated with

some other objects. For example, in case of certain Banach algebras of Laurent

and Toeplitz operarors, every such operarator is associated with a symbol which is

a function. In such a situation, one would naturally want to know if any relation

exists between such a symbol of a Toeplitz operator and and its spectrum and

related sets. Some work dealing with this aspect about spectrum, pseudospectrum

and condition spectrum can be found in [?] and [?]. Nothing much seems to be

known about other related sets. In particular, we do not know any information

regarding Ransford spectrum of a Toeplitz operator and its symbol.

Since we have confined our attention to the context of a Banach algebra, we

could not deal with unbounded operators as such operators can not be members

of any Banach algebra. Some times it so happens that even if an operator T

is unbounded, the inverse of λI − T is a bounded operator for some values of

λ. In case of such an operator, there is a natural way to define spectrum and

ε-pseudospectrum.(See [?].) In principle, this approach can be extended to (n, ε)-

pseudospectrum. It is not clear whether and how the ideas of Ransford spectrum

can be developed in this context.
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