
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Novel VLSI Architecture for Fractional-Order
Correntropy Adaptive Filtering Algorithm

Daney Alex, Vinay Chakravarthi Gogineni , Member, IEEE, Subrahmanyam Mula , Member, IEEE,

and Stefan Werner , Senior Member, IEEE

Abstract— Conventional adaptive filters, which assume
Gaussian distribution for signal and noise, exhibit significant
performance degradation when operating in non-Gaussian
environments. Recently proposed fractional-order adaptive
filters (FoAFs) address this concern by assuming that the
signal and noise are symmetric α-stable random processes.
However, the literature does not include any VLSI architectures
for these algorithms. Toward that end, this article develops
hardware-efficient architecture for fractional-order correntropy
adaptive filter (FoCAF). We first reformulate the FoCAF for its
efficient real-time VLSI implementation and then demonstrate
that these reformulations cause negligible performance
degradation under the 16-bit fixed-point implementation. Using
this reformulated algorithm, we design an FoCAF architecture.
Furthermore, we analyze the critical path of the design to select
the appropriate level of pipelining based on the sampling rate
of the application. According to the critical-path analysis, the
FoCAF design is pipelined using retiming techniques to obtain
delayed FoCAF (DFoCAF), which is then synthesized using
45-nm CMOS technology. Synthesis results reveal that DFoCAF
architecture requires a minimal increase in hardware over the
prominent least mean square (LMS) filter architecture and
achieves a significant increase in the performance in symmetric
α-stable environments where LMS fails to converge.

Index Terms—α-Stable signals, adaptive filters, fractional-
order correntropy criterion, logarithmic number system, VLSI
architectures.

I. INTRODUCTION

IN REAL-WORLD applications, adaptive signal processing
algorithms are commonly used to learn the underlying

unknown system from a limited number of observations [1].
In order to achieve mathematical tractability and computa-
tional efficiency, these algorithms often consider a Gaussian

Manuscript received November 15, 2021; revised February 5, 2022;
accepted March 31, 2022. This work was supported in part by the Science and
Engineering Research Board (SERB), Department of Science and Technology,
Government of India, under Startup Research Grant SRG/2020/000858; and in
part by the Research Council of Norway. (Daney Alex and Vinay Chakravarthi
Gogineni contributed equally to this work.) (Corresponding author:
Subrahmanyam Mula.)

Daney Alex and Subrahmanyam Mula are with the Department of
Electrical Engineering, IIT Palakkad, Kozhippara 678557, India (e-mail:
122003001@smail.iitpkd.ac.in; svmula@iitpkd.ac.in).

Vinay Chakravarthi Gogineni and Stefan Werner are with the Depart-
ment of Electronic Systems, Norwegian University of Science and Tech-
nology (NTNU), 7491 Trondheim, Norway (e-mail: vinay.gogineni@ntnu.no;
stefan.werner@ntnu.no).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2022.3169010.

Digital Object Identifier 10.1109/TVLSI.2022.3169010

statistical model for signal and noise [2]. The Gaussian
assumption on input and noise signals, however, is not the
best choice in a large number of modern applications, such
as seismic activity, climatology and weather, ocean wave vari-
ability, acoustic emissions from cracks growing in engineering
materials under stress [3], underwater acoustics [4], wideband
communications [5], financial data modeling [6], and neu-
roimage processing [7], in which the signals exhibit sharp
spikes. These signals can be effectively modeled by symmetric
α-stable (SαS) distributions, having heavier tails than those of
Gaussian distributions [8]. Since SαS signals do not have finite
second- or high-order moments, the performance of adaptive
filters based on minimizing second- or high-order moments of
error deteriorates when operating in such an environment [9].

Adaptive filters based on the maximum correntropy crite-
rion (MCC) [10]–[15] demonstrate better performance in a
non-Gaussian noise environment compared to conventional
adaptive filters. However, MCC adaptive filters cannot repli-
cate this performance when both signal and noise are SαS ran-
dom processes since the cost function of MCC is defined over
second- or high-order moments of the error [16]. To address
this issue, fractional-order adaptive filters (FoAFs) that min-
imize fractional-order errors using fractional-order calculus
were proposed in [17]. Although the FoAFs show improved
performance over conventional adaptive filters, the FoAFs are
sensitive to the characteristic exponent α. Moreover, residual
jitters may still be present in their steady-state estimates [16],
which is undesirable in real-time implementations. Recently,
fractional-order correntropy adaptive filters (FoCAF) were
proposed to solve these problems by blending the concepts
of fractional-order calculus and a correntropy-type similarity
measure [9], [16]. The FoCAF has been demonstrated to be an
effective solution for tracking dynamic systems in SαS signal
and noise environments [16].

Adaptive filtering algorithms are iterative in nature; thus,
their implementation involves a high degree of computational
complexity and memory access. Software solutions for adap-
tive filters cannot meet the power and throughput require-
ments, especially in real-time applications such as channel
estimation [18], where performance is directly influenced by
the speed and precision of channel estimation. Thus, tai-
lored VLSI architectures are necessary for such applications
to implement adaptive filters in real time [19]. Numerous
efforts were made in the literature toward high-performance
architectures for adaptive filters and their variants when the

1063-8210 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2171-9623
https://orcid.org/0000-0001-5092-0524
https://orcid.org/0000-0003-0148-4724

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

noise alone is modeled as non-Gaussian [20], [21]. To the
best of our knowledge, no architectures have been developed
for adaptive filters when input and noise are both modeled as
non-Gaussian signals. Although FoCAF exhibits good perfor-
mance in non-Gaussian signal and noise environments, direct
implementation of FoCAF in hardware is highly challeng-
ing. Weighted-sum operations and fractional-order operations
result in a long critical path. This long critical path limits
the throughput in applications such as underwater acoustic
channel estimation [2], [22]–[24], where the required operating
frequency is in the megahertz and gigahertz range. In order to
address this issue, this article proposes several reformulations
that minimize the algorithm complexity in a VLSI implemen-
tation. The main contributions of this work are summarized as
follows.

1) We propose reformulations for the FoCAF algorithm
to make it suitable for VLSI implementation, which
includes a hardware-friendly scheme for exponentiation
functions with base ∈ (0, 1] using the Maclaurin series
and we design a pipelined VLSI architecture for the
reformulated FoCAF.

2) A detailed critical-path analysis of the FoCAF architec-
ture is presented. Based on this analysis, we propose an
optimal architecture considering the area-delay product
as the metric.

3) The proposed delayed FoCAF (DFoCAF) architecture is
synthesized for ASIC using 45-nm CMOS technology
and the synthesis results are compared with the state-
of-the-art pipelined DLMS architecture, to show that
the area and power overhead are minimal despite the
performance improvement.

The remaining article is organized as follows. Section II
briefly reviews SαS signals and FoCAF algorithm. Section III
presents the implementation of the exponentiation function,
the reformulation of the FoCAF algorithm, and the VLSI
architecture design of DFoCAF. Section IV discusses the
application-specific integrated circuit (ASIC) synthesis results.
Finally, Section V concludes this article.

II. PRELIMINARIES

Consider the system identification problem shown in Fig. 1.
Here, the unknown system is modeled by an L-tap coefficient
vector wopt. At time index n, the system takes un as input and
produces the desired output dn = wT

optun + νn , where un =
[un, un−1, . . . , un−L+1)]T is the input signal vector and νn is the
unknown observation noise. The input signal and observation
noise are assumed to be zero-mean SαS random processes.
The goal of system identification setup is to estimate the
unknown system wopt, given un and dn.

A. SαS Signals

An important class of non-Gaussian phenomena [25] is
associated with occasional bursts or sharp spikes present in
their realizations. In particular, the SαS distribution can model
input signal and noise for such phenomena. These distributions
have heavier tails compared to the Gaussian distribution. In the
density function of SαS random processes, the characteristic

Fig. 1. System identification.

exponent α ∈ (0, 2] regulates the tail heaviness [16]. For
α = 2, the density function is Gaussian, and as the value
of α decreases, the density function exhibits heavier tails.
Except for the Gaussian case, SαS random processes only
pose finite statistical moments of orders strictly less than α.
Therefore, adaptive filtering algorithms whose derivation relies
on a second-order moment of the error measure experience
significant performance degradation when both signal and
noise are modeled as SαS random processes. As for solutions
to filtering, it is implicitly assumed that α ∈ (1, 2], so condi-
tional expectations may be established. Thus, this article only
considers real-valued SαS random processes with α ∈ (1, 2],
without loss of generality. More details can be found in [12],
[25], and [26].

B. Fractional-Order Correntropy Adaptive Filter

Conventional adaptive filters that minimize the second-order
moment of an error measure exhibit considerable performance
degradation in SαS environments due to the absence of
high-order moments in the SαS distribution. To solve this
problem, a class of adaptive filters based on the concepts of
fractional-order calculus has been proposed [17], [27], [28].
FoAFs [9] minimize the fractional-order error measure using
fractional-order calculus. The objective function of FoAF in
the case of system identification is given by

J = E
[
en e〈α′−1〉

n

]
(1)

where en = dn − yn is the estimated error with yn = uT
n wn

and wn ∈ R
L is the estimate of wopt at time instance n and

the parameter α′ ∈ (1, α). Here, e〈α′−1〉
n is the fractional-order

error, given by |en|(α′−1) sign(en), where sign(·) and | · | denote
sign and absolute values of their arguments, respectively. The
weight update equation of FoAF is

wn+1 = wn + μ en u〈α′−1〉
n (2)

where μ is the step size. In (2), u〈α′−1〉
n is the fractional-

order input, which is the elementwise implementation of the
function |[un]i |(α′−1) sign([un]i). The fractional-order scaling
of the input signal in the update equation makes it tolerant to
jittery SαS input signals.

Although FoAF performs better in α-stable environments,
its steady-state estimate may still contain residual jitters. The
presence of jitter is due to the impulsive nature of noise, which
affects the error in the FoAF update equation. FoCAF solves

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALEX et al.: NOVEL VLSI ARCHITECTURE FOR FRACTIONAL-ORDER CORRENTROPY ADAPTIVE FILTERING ALGORITHM 3

Fig. 2. Learning curves [NMAD versus iterations (n)] of the state-of-the-art
algorithms in α-stable environment.

this issue by fusing the concepts of fractional-order calculus
and correntropy-type localized similarity measure. The FoCAF
iteratively estimates the unknown system by maximizing the
following fractional-order correntropy criterion [16]:

J = E

[
exp

(
−en e〈α′−1〉

n

2 β2

)]
(3)

where β > 0 regulates the bandwidth of the kernel [16]. The
FoCAF weight update equation is given by

wn+1 = wn + μ exp
(
−σen e〈α′−1〉

n

)
en u〈α′−1〉

n (4)

where σ = (1/2 β2).

C. Performance Study of FoCAF

In this section, the performance of the FoCAF algorithm
is demonstrated in an α-stable environment. For this, the
FoCAF is simulated to identify a randomly chosen 16-tap
linear system. Input signal and observation noise are zero-
mean SαS signals with variance 0.2 and 0.1, respectively. The
characteristic exponent α of input signal and observation noise
are set to 1.6 and 1.5, respectively. In addition to FoCAF,
the state-of-the-art approaches, such as least mean square
(LMS), MCC, and FoAF algorithms are also simulated for
identifying the same system. The normalized mean absolute
deviation (NMAD) given by E[((‖wopt − wn‖1)/(‖wopt‖1))] is
considered as a performance metric. The performance of all
these algorithms is compared by plotting NMAD in decibel
versus iteration index n, by averaging over 100 independent
experiments. For both FoAF and FoCAF algorithms, the
parameter α′ is chosen to be 1.3. The kernel width β of both
FoCAF and MCC algorithms is fixed at 0.9. The step size μ
of each algorithm is selected so that the initial convergence
of all algorithms is the same to have a fair comparison of
their steady-state estimation performance. The learning curves
obtained from simulations are plotted in Fig. 2.

From Fig. 2, we see that the FoCAF algorithm achieves a
better convergence rate and improved steady-state NMAD than

MCC and FoAF algorithms. The conventional LMS diverges
after certain iterations. Furthermore, FoAF and MCC algo-
rithms exhibit residual jitters in their steady-state estimates.
It is important to note that FoCAF is robust against the
selection of parameters α′ and β. The robust performance of
FoCAF in α-stable environments motivated us to develop its
VLSI implementation to serve in real-time applications such
as underwater acoustic channel estimation and equalization.

III. VLSI ARCHITECTURE FOR FOCAF ALGORITHM

In this section, we present the details of the proposed VLSI
architecture for FoCAF. Due to the exponentiation operation
and numerous multiplications in the update equation (4),
FoCAF in its native form is inefficient for hardware imple-
mentation. Hence, we reformulate FoCAF to ensure that it is
hardware friendly without losing accuracy. With the fixed-bit
implementation, we examine the performance of the reformu-
lated FoCAF. In order to achieve higher clock frequency and
throughput, the reformulated algorithm is retimed based on a
detailed critical-path analysis. Finally, we design a pipelined
VLSI architecture for the reformulated FoCAF.

For the purpose of reformulation, the update equation of
FoCAF algorithm in (4) can be written as

wn+1 = wn + rn xn (5)

where

rn = μ exp
(
−σen e〈α′−1〉

n

)
en (6)

and

xn = [xn, xn−1, . . . , xn−L+1]T

is the fractional-order input vector. Fractional-order input xn

is obtained from un as

xn = u〈α′−1〉
n . (7)

We then reformulate rn and xn to make them suitable for VLSI
implementation. We first propose a hardware-friendly method
for approximating exponentiation function using a logarithmic
number system (LNS), which simplifies this function to a great
extent.

A. Hardware Implementation of LNS

Consider a binary number Q with an int integer and fr
fractional bits, i.e., qint−1 qint−2 · · · q0 q−1 q−2 q−fr and qt be
the leading one bit of Q. Then, the value of Q can be written
as Q = 2t(1 + j), where j is a fraction, with 0 ≤ j ≤ 1.
The equation for log2(Q) conversion based on Mitchell’s
scheme [29], [30] is shown as follows:

t1 = LOD(Q)

j = Q[t1 − 1 : 0]

t = t1 − fr

log2(Q) = {t, j} (8)

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 3. Architectures for LNS conversions [29].

where leading one detector (LOD) detects the leading one
position t1 in Q. The equations for alog2(Q) based on
Mitchell’s scheme are shown as follows:

j1 = {1, Q[fr − 1 : 0]}
t = 2Q[int+fr−1:fr]

2Q = t ∗ j1. (9)

The architecture for LNS conversions based on (8) and (9) is
shown in Fig. 3. From Fig. 3, we see that the log converter
consists of a simple LOD circuit followed by a barrel shifter,
while the antilog converter involves the concatenation of 1
and j , followed by a barrel shifter.

B. Hardware Implementation of the Exponentiation Function

This section presents a hardware-friendly method for
approximating exponentiation operations of type ax in (4),
where x is the variable and a is the constant. Exponential and
logarithmic operations are commonly used in signal processing
algorithms. Several architectures based on the Taylor and
Maclaurin series have been proposed to implement these
operations [31], [32]. However, if the value of a is large, these
schemes lead to many of multipliers and adders. FoCAF, on the
other hand, allows an exponentiation base to be bound between
0 and 1. This facilitates the implementation of exponentiation
in hardware with the Maclaurin series, as described in the
following. From the Maclaurin series, we have

ax = 1 +
∞∑

m=1

(sign(x))m(sign(ln a))m |x |m | ln a|m
m! . (10)

When the value of a ∈ (0, 1], ax can be approximated with
first nt terms of the series in (10) and ln a is always negative.
The computation of (10), however, requires many multipli-
cations and power operations that synthesize very poorly for
VLSI real-time implementations. Thus, we rewrite (10) using
LNS. Considering the first nt terms of the series and including
LNS, (10) can be rewritten as

ax = 1 +
nt∑

m=1

(sign(x))m(−1)m2
(

m log2 |x|+log2

(| ln a|m
m!

))
. (11)

Note that log2(| ln a|m/m!) is a constant for a given m.
Depending on the value of m where m = 1, 2, 3, . . . , nt ,

Fig. 4. Approximate implementation of ax for different values of terms
in the series (nt) versus accurate ax values. (a) x = −0.3 and a = 0.3.
(b) x = −0.2 and a = 0.5. (c) x = 0.2 and a = 0.7. (d) x = 0.8 and
a = 0.9.

these constants can be stored in registers without calculating
them every time. In this case, m log2(x) can be realized using
addition when the first nt terms of the series are chosen. The
value of nt is selected based on required accuracy. Therefore,
the reformulation proposed in (11) allows us to implement
the exponentiation function ax with a ∈ (0, 1] without any
multiplications and power operations. Furthermore, with few
reformulations, functions of type eax and xa can also be
implemented based on these Maclaurin approximations as
discussed in Section III-C.

1) Performance Study of the Proposed Approximations:
The performance of the proposed exponentiation calculation
scheme in (11) is compared with the actual exponentiation val-
ues using numerical simulations. The exponentiation function
ax is simulated for different values of x and a. The function
is then implemented using (11) for different numbers of terms
in the series nt . The results are then compared with actual
values for the same inputs and shown in Fig. 4.

From Fig. 4, one can see that in real-time implementations,
exponentiation functions with base values in range (0, 1] can
be approximated by using the proposed reformulations in (11).
The value of nt is determined by the amount of precision
needed for the application.

2) Hardware Implementation Cost of the Proposed Approx-
imations: To quantify the hardware efficiency of the proposed
simplifications, we implemented ax using direct series approx-
imation and also through the LNS approximation. We coded
the designs in Verilog and synthesized them using the Cadence
Genus synthesis tool with 45-nm CMOS standard cell library.
The plot comparing the area-delay products of the proposed
LNS approximation and the direct approximations for differ-
ent numbers of terms in the series nt is shown in Fig. 5.

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALEX et al.: NOVEL VLSI ARCHITECTURE FOR FRACTIONAL-ORDER CORRENTROPY ADAPTIVE FILTERING ALGORITHM 5

Fig. 5. Approximate implementation of ax using LNS and direct approxi-
mation methods for different number of terms in the series (nt).

It can be seen from Fig. 5 that the proposed approximations
incur significantly lower area-delay product compared to the
direct series approximation. The intuitive explanation for this
is given as follows. In the case of direct series approximation,
an increase in nt leads to more number of multipliers, whereas,
in the case of LNS approximation, it leads to more ALOG
units whose hardware complexity is much less compared to
multipliers.

C. FoCAF Algorithm Reformulation

This section presents hardware-friendly implementation of
fractional-order input and FoCAF error function based on
hardware implementation exponentiation function.

1) Fractional-Order Input: Based on the definition for the
fractional-order input in Section II-B, (7) can be rewritten as

xn = sign(un)
(
|un|(α′−1)

)
= sign(un)

(
2(α′−2) log2 |un | |un|

)
= sign(un)

(
plog2 |u(n)| |un|

)
(12)

where p = 2(α′−2) is a constant. The term plog2 |un | can
be approximated using a Maclaurin series, as shown in
Section III-B1. Here, p � (0, 1) since α′�(1, α), and therefore,
the value of ln p is always negative. Thereby, plog2 |un | is
approximated with first three terms of the Maclaurin series
as

plog2 |un | = 1 +
3∑

m=1

(
(−1)m

(
log2 |un|

)m
(| ln p|m

m!
))

. (13)

Substituting (13) into (12) and denoting (| ln p|m/m!) as qm ,
we have

xn = sign(un)

(
|un| +

3∑
m=1

(
(−1)m

(
log2 |un|

)m
qm |un|

))
.

(14)

By introducing LNS in (14), we obtain

xn = sign(un)

×
(

|un| +
3∑

m=1

((
sign

(
log2 |un|

))m

× (−1)m2(m log2 | log2 |un ||+km+log2 |un |)
))

(15)

where km = log2 |qm| is a constant for a given m. Depending
on the value of m, where m = 1, 2, 3, . . . , nt , and these
constants can be stored in registers without calculating them
every time. It is worth noting that (15) is free of mul-
tiplications and only contains additions, LNS, and shifting
operations. Therefore, the reformulation of (7) to (15) enables
hardware-friendly calculation of xn.

2) FoCAF Error Function: The FoCAF error function is

f (en) = exp
(
−σ |en| |en|〈α′−1〉

)
en

= b
(
|en |2 |en |〈α′−2〉

)
en (16)

where b = exp(−σ) is a positive constant. By introducing
LNS in (16), we have

f (en) = sign(en) 2
(
|en |2|en |(α′−2) log2 b+log2 |en |

)

= sign(en) 2g(en) (17)

where g(en) = (|en|2|en|(α′−2) log2 b + log2 |en|). Furthermore,
by employing LNS, the term |en|(α′−2) from g(en) can be
rewritten as 2(α′−2) log2 |en |. By following the same reformulation
procedures as in (12)–(14), we get

g(en) = z|en|2
(

1 +
(

3∑
m=1

(−1)m
(
log2 |en|

)m
qm

))
+log2 |en|

(18)

where z = log2(b). Here, z is always negative. The terms
in (18) can then be rearranged as

g(en) = −
(

|z||en|2 +
(

3∑
m=1

(−1)m |sm| (log2 |en|
)m |en|2

)

− log2 |en|
)

(19)

where s = z qm . By incorporating LNS in (19)

g(en) = −
(

2(c0+2 log2|en |) +
(

3∑
m=1

(
sign

(
log2 |en|

))m

× 2(m log2 | log2 |en ||)+cm+2 log2 |en |)
)

− log2 |en|
)

(20)

where c0 = log2 |z| is a constant and cm = log2 |sm | is a
constant for a given m. Depending on the value of m where
m = 1, 2, 3, . . . , nt , these constants can be stored in registers

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 6. Learning curves of the original and reformulated FoCAF with different
number of terms in series (nt).

without calculating them every time. Similar to (15), the
reformulated error function in (20) is free of multiplications
and only contains additions, LNS, and shifting operations.
From (6), (17), and (20), we get

rn = μ sign(en) 2g(en). (21)

3) Performance of the Reformulated FoCAF: The perfor-
mance of FoCAF with the proposed reformulations in (15)
and (20) is demonstrated using numerical simulations. The
reformulated FoCAF with different nt values are simulated
for the same system identification problem in Section II-C.
In order to compare the performance, simulations are also per-
formed with the original FoCAF, considering the same input
parameter and step size values. The learning curves obtained
from simulations are plotted in Fig. 6. From Fig. 6, we see that
the reformulated FoCAF with nt = 3 has similar convergence
and steady-state performance as that of the original FoCAF
algorithm. The steady-state value and convergence rate show
tiny degradation as the value of nt decreases. Thus, the value
of nt has to be selected based on the performance-hardware
complexity tradeoff.

D. Bit-Width Consideration of the Proposed FoCAF
Fixed-Point Implementation

The performance of the original floating-point FoCAF
algorithm and reformulated FoCAF algorithm with 16-, 12-,
and 8-bit fixed-point representations are compared in Fig. 7
by considering the same system identification problem in
Section II-C. From Fig. 7, it is evident that reformulated
FoCAF with 16-bit fixed-point representation has approx-
imately the same steady-state performance as that of the
original FoCAF algorithm. Reformulated FoCAF is tolerant to
logarithmic approximations due to its stochastic and iterative
nature. From the figure, we can also observe degradation
in the steady-state performance as bit width reduces. Thus,
architecture with a bit width of 16 is preferable for VLSI
implementation of the reformulated FoCAF.

Fig. 7. Learning curves of the reformulated FoCAF algorithm in 16-, 12-,
and 8-bit fixed-bit representation.

Fig. 8. Learning curves of the FoCAF and DFoCAF algorithms with different
values of adaptation delay M.

E. Delayed FoCAF Algorithm

For real-time implementations, even after the simplifica-
tions described in Section III-C, the time complexity of the
reformulated FoCAF algorithm remains high since rn must be
computed at every iteration, and the weights must be updated
before proceeding to the next iteration. The feedback loop
that updates the filter weights in each iteration restricts direct
pipelining. In order to resolve this issue, FoCAF is modified to
a form known as DFoCAF by extending the concept of delayed
adaptation [33]. Delayed adaptation assumes that the error
gradient rn xn is not affected much by the delay M (adaptation
delay). As long as M < L, this is a fair assumption [33]. The
update equation of the DFoCAF algorithm is given by

wn+1 = wn + rn−M xn−M (22)

where

rn−M = μ sign(en−M) 2g(en−M). (23)

By introducing the M delay registers in the feedback loop,
we can apply retiming [34] to reduce the critical path, thereby

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALEX et al.: NOVEL VLSI ARCHITECTURE FOR FRACTIONAL-ORDER CORRENTROPY ADAPTIVE FILTERING ALGORITHM 7

Fig. 9. DFoCAF architecture.

increasing the sampling rate. We now compare the results
of DFoCAF and FoCAF to check the extent to which the
adaptation delay M affects proportionate adaptation. Learning
curves of DFoCAF for the system identification problem
in Section II-C are plotted with different values of M and
compared with the FoCAF, as shown in Fig. 8. We see that the
DFoCAF algorithm has negligible degradation in convergence
rate compared to the FoCAF algorithm for small values of M .
However, as the adaptation delay increases, we observe slight
degradation in the convergence rate and steady-state NMAD.

F. DFoCAF Architecture

The VLSI architecture of the proposed DFoCAF algorithm
is shown in Fig. 9. The bit widths of all the intermediate
signals in the Qint·fr format (where int is the number of integer
bits and fr is the number of fractional bits) are also shown
in the architecture. These bit widths are determined by fol-
lowing the MATLAB floating-point to fixed-point conversion
methodology to avoid overflows. The architecture essentially
implements (22), which updates the filter coefficients in every
iteration. As shown in Fig. 9, the architecture features a
fractional-order input module, L tap modules, log2(L) stage
adder tree, and an error update module. The functionality of
each module is explained briefly in the following.

1) Fractional-Order Input Module: The fractional-order
input module computes the fractional-order input xn from
the original input un , based on (15). The architecture for
the fractional-order input module is shown in Fig. 10. Con-
sidering that logarithm is only defined for positive numbers,
the absolute value of input un is first computed in the ABS
block. LOG and ALOG blocks implement base-2 logarithm
and antilogarithm, respectively. The LOG and ALOG blocks
are realized using Mitchell’s scheme, which is a very sim-
ple scheme requiring only an LOD and barrel shifter. The
multiplication with −1 in the architecture is nothing but 2’s
complement operation. k1, k2, and k3 are constants calculated
from (15) and are stored in storage registers. Adders and
subtractors are used to accumulate the first three terms of the
Maclaurin series. However, as seen from (15), the sign of the
first and third terms of the series are assigned with respect to
sign(log2 |un|). Similarly, (15) also involves the computation
of sign(un). In order to realize these sign assignments in
hardware, a combination of SIGN module, 2′s complement
module, and multiplexer module is used. While realizing
the sign assignment operation of type sign(an)b, the SIGN
module determines the sign of a, whereas the multiplexer
module assigns the sign to b, by either selecting b directly
or −b depending on sign of a. Delays are introduced in
the module based on critical-path analysis in Section III-G.

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 10. Fractional-order input module architecture.

We can see that all the submodules in the architecture,
such as LOG, ALOG, MUX, and 2’s complement evaluation,
require considerably less hardware complexity than multipliers
and exponential operators. From (21), we can see that the
FoCAF update equation involves computation of vector xn

containing elements xn, xn−1, . . . , xn−L+1. In order to realize
xn, the architecture involves a fractional-order tapped delay
line (shown in Fig. 9) with the fractional-order input as the
delay-line input. The number of delay registers in the delay
line is L −1. Therefore, as the filter order increases, the length
of the tapped delay line increases linearly.

2) Tap Module: The tap module in Fig. 9 is responsible for
calculating the partial products of the filter output and also
for realizing the weight update recursion. Each tap module
realizes (24) and (25) in hardware

wn+1,i = wn,i + rn xn−i (24)

where wn,i represents i th filter weight corresponding to filter
tap i (0 ≤ i ≤ L − 1) at time index n

pi = un−i wn,i . (25)

Here, un−i is the input to the i th tap module and pi is the
output from i th tap module. The output of the filter, yn,
is obtained by adding all individual tap module outputs using
an adder tree, i.e., (yn = �L−1

i=0 pi). In order to reduce the
propagation delay through the adder tree and to keep Tmult as
the critical path, a carry save adder tree [21] is utilized in the
design.

3) Error Update Module: The error update module com-
putes the error update factor rn from the error en , based
on (21). The architecture for the error update module is shown
in Fig. 11. Here, c0, c1, c2, and c3 are constants that are

Fig. 11. Error update module architecture.

calculated and stored in storage registers. The architecture is
very similar to the fractional-order input module except for
the multiplication with step size μ. We consider the step size
to be negative power of 2, i.e., of the form (1/2k) to avoid
multiplication. The error update factor is fed to all the taps to
realize the weight update equation.

To evaluate the hardware complexity of the proposed archi-
tecture, we compared it with the DLMS architecture [33]
where DLMS is a high-throughput retimed implementation
of the LMS algorithm. It can be observed from Fig. 9 that,
compared to the DLMS architecture in [33], the hardware
overhead of the DFoCAF architecture is a fractional-order
input module, error update module, and fractional-order tapped
delay line. Based on the synthesis results in Section IV, we will
show that this area overhead of DFoCAF is very small. We see
in the literature that several strategies [19], [33] can be utilized
to implement variants of LMS, all claiming different benefits.
It is important to note that the proposed DFoCAF algorithm
can be implemented by integrating a fractional-order input
module, an error update module, and a fractional-order tapped
delay line appropriately into any of those LMS architectures.

G. Critical-Path Analysis

As discussed in Section III-E, DFoCAF architecture is
retimed to improve the throughput. However, retiming has
two adverse effects. First, the number of registers increases,
which leads to more area and power dissipation. Second, as the
adaptation delay increases, the convergence rate degrades,
as shown in Fig. 8. Thus, the architecture has to be carefully
retimed based on a detailed critical-path analysis. This analysis

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALEX et al.: NOVEL VLSI ARCHITECTURE FOR FRACTIONAL-ORDER CORRENTROPY ADAPTIVE FILTERING ALGORITHM 9

TABLE I

SYNTHESIS RESULTS OF FOCAF WITH FILTER ORDER 16 USING CADENCE CMOS LIBRARY FOR VARIOUS ADAPTATION DELAYS M

TABLE II

SYNTHESIS RESULTS OF LMS AND DFOCAF WITH DIFFERENT FILTER ORDER USING CADENCE 45-nm
CMOS LIBRARY FOR CLOCK FREQUENCY 1.048 GHz

TABLE III

THEORETICAL HARDWARE COMPLEXITY OF DFOCAF ARCHITECTURE

is done by increasing the adaption delays (number of pipeline
stages) in the architecture from 0 to 6 and synthesizing the
corresponding designs to find the maximum clock frequency.
Table I shows the synthesis results of DFoCAF architecture
with filter length 16 and different values of adaptation delay
M . The designs are coded in Verilog and synthesized using
Cadence Genus synthesis tool with a 45-nm CMOS standard
cell library. Based on the synthesis results, Fig. 12 shows the
histograms for different values of M . These histograms show
“number of paths versus slack in ns.” In static timing analysis
(STA), slack is defined as the difference between data required
time and data arrival time (DAT) at the destination register
input. Next, we discuss the placement of the pipeline registers
for different values of M and the resulting critical path.

1) Zero Adaptation Delay: When the FoCAF adaptive filter
is implemented without pipelining, the critical path of corre-
sponding design is (Ttap + Tadd_tree + Tsub + Terr_upd), where
Ttap, Tadd_tree, Tsub, and Terr_upd are the propagation delays of
tap module, adder tree, subtraction module, and error updation
module, respectively. From Table I, we can observe that the
maximum attainable frequency of the FoCAF architecture with
no adaption delay is very low because of the long critical
path. Also, from histogram 12, we can observe that there are
many paths with large positive slack values. Thus, the FoCAF
architecture has to be pipelined to increase the maximum
attainable frequency.

2) One Adaptation Delay: Here, we add delay registers in
between the subtractor that calculates the error en and the
error update module. The addition of this pipeline register
will reduce the critical-path to (Terr_upd + Tmult). From Table I,
we can observe that the maximum attainable frequency of the
DFoCAF architecture with one adaption delay improved con-
siderably as a result of pipelining. By observing histogram in
Fig. 12(b), still, there are many paths with large positive slack
values, and thus, the FoCAF architecture can be pipelined
further.

3) Three Adaptation Delays: The architecture is further
retimed by adding two more pipelined registers. A pipeline
register is placed at the output of the tap module and another
one at the output of the error update module. The resulting
critical path is reduced to Terr_upd and we can observe fur-
ther increase in maximum attainable frequency from Table I.
Despite the decrease in maximum slack value in the histogram
in Fig. 12(c), there remain many paths with positive slacks.
This indicates that there is still room for improvement.

4) More Adaptation Delays: In order to further retime
the architecture, we need to do fine-grain pipelining of the
fractional-order input module and the error update module,
i.e., we add pipeline registers at appropriate places inside
these modules, as shown in Figs. 10 and 11. Critical path
of the architecture with four adaptation delays is reduced to
(2Tlog+2Tabs+3Tadder+Talog+Tinv+Tmux). Similarly, the critical

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 12. Histogram with slack value of various paths in DFoCAF design for
various adaptation delays M. (a) M = 1. (b) M = 2. (c) M = 3. (d) M = 4.
(e) M = 5. (f) M = 6.

paths with five and six adaptation delays are Tadd_tree and Tmult,
respectively. From synthesis results, we observe that Tadd_tree

for a three-stage adder tree is almost the same as Tmux. We can
also observe from the histogram that with M = 5, there are
many paths with slack close to zero and we stop the pipelining
at this point and take the critical path to be Tmux. Moreover,
from Table I, we can also observe that the area-delay product
is minimum for M = 5. Note that, as the order of the filter
increases, the number of stages of the adder tree increases.
In order to maintain the critical path at Tmult, the adder tree
has to be pipelined after every third stage.

IV. VLSI IMPLEMENTATION RESULTS

The proposed DFoCAF architecture is implemented in Ver-
ilog HDL and simulated using the Cadence NCSim simulator.
All the operations in the DFoCAF architecture, including LOG
and ALOG, are also implemented in fixed-point MATLAB,
and the outputs are taken as the golden reference values. The
Verilog simulation results are verified against these golden
reference outputs from MATLAB for many sets of random
inputs. After verification, the designs are synthesized using the
Cadence Genus tool in 45-nm CMOS technology. As discussed
in Section III-G, Table I shows the synthesis results for FoCAF
architecture for different values of adaptation delay, M . From
Table I, we can observe that the best area-delay product is
obtained at M = 5.

Next, DFoCAF architectures with filter orders of 16, 32,
and 64 are considered for synthesis to check the scalability of
the proposed architectures. The synthesis results are tabulated
in Table II. Since there are no prior architectures available
for DFoCAF, the results are compared against state-of-the-art
DLMS [29] architectures. Note that the DLMS architectures
from [29] are also coded in Verilog and synthesized using the
same 45-nm libraries for a fair comparison. Here, DLMS is
chosen for comparing the synthesis results of DFoCAF since
DLMS is the least complex adaptive filtering algorithm that
can be implemented on hardware. DFoCAF and DLMS with
M = 6 and M = 3, respectively, are chosen for comparing the
synthesis results so that the critical path of both designs is Tmult

and the clock frequency is 1.048 GHz. The dynamic power
values given in Tables I and II are extracted from postsynthesis
power reports by annotating switching activity interchange
format (SAIF) files from gate-level timing simulations with
random inputs generated from a symmetrical α-stable dis-
tribution. From Table II, we see that DFoCAF has 1.13×,
1.12×, and 1.05× increment in area and has 1.26×, 1.11×,
and 1.10× increase in the dynamic power for 16, 32, and
64 taps, respectively, when compared with DLMS. Compared
to the DLMS architecture, the additional logic to obtain the
fractional-order input, the nonlinear error function in DFoCAF,
and the delay chain for fractional-order input contribute to the
area and power overhead. However, the increase in area and
power is very little compared to the improvement achieved in
steady-state NMAD and convergence rate by DFoCAF over
the DLMS algorithm, which does not even converge in SαS
signal and noise environment (see Fig. 2). From Table II, it is
worth noting that the area overhead of DFoCAF decreases with
filter order and becomes negligible for large order filters.

Table III presents the theoretical hardware complexity of
the DFoCAF architecture in terms of a number of each basic

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALEX et al.: NOVEL VLSI ARCHITECTURE FOR FRACTIONAL-ORDER CORRENTROPY ADAPTIVE FILTERING ALGORITHM 11

TABLE IV

AREA BREAKDOWN OF 256-TAP DFOCAF SUBBLOCKS

module required per iteration such as adders and multipliers.
Table III shows that the increase in the number of basic
modules with the increase in filter order is not linear. This is
because the fractional-order and error update module are scalar
modules, i.e., they are independent of filter order. Hence, for
higher filter orders, their area and power overhead decrease,
which is evident from Table IV showing the area overhead
in percentage between different modules in the design. Here,
logic specific to DFoCAF includes fractional-order module,
error update module, and fractional-order tapped delay line,
as explained in Section III-F. A notable feature of the pro-
posed DFoCAF algorithm is that it can be implemented by
integrating the logic specific to DFoCAF with any variant of
the LMS architecture described in the literature. We can see
from both theoretical complexity analysis as well as synthesis
results that the area overhead of DFoCAF decreases with filter
order and becomes negligible for high-order filters.

V. CONCLUSION

Fractional-order correntropy adaptive algorithms exhibit
robust performance in non-Gaussian signal and noise environ-
ments, where the conventional LMS variants fail. In this work,
we demonstrated that the hardware implementation cost of the
FoCAF algorithm could be brought down significantly through
several reformulations without compromising the performance
of the algorithm. We also provided a comparative discussion
on the hardware complexities of the conventional DLMS and
the proposed DFoCAF through ASIC synthesis results and
showed that the performance gain of the DFoCAF over DLMS
is significant with minimal increase in hardware overhead.
In future, we wish to extend the fractional-order correntropy
approach to other state-of-the-art adaptive filters to realize
them in hardware.

REFERENCES

[1] A. H. Sayed, Adaptive Filters. Hoboken, NJ, USA: Wiley, 2011.
[2] T. Kailath, A. H. Sayed, and B. Hassib, Linear Estimation.

Upper Saddle River, NJ, USA: Prentice-Hall, 2000.
[3] R. D. Pierce, “Application of the positive alpha-stable distribution,” in

Proc. IEEE Signal Process. Workshop Higher-Order Statist., Jul. 1997,
pp. 420–424.

[4] M. Bouvet and S. C. Schwartz, “Comparison of adaptive and robust
receivers for signal detection in ambient underwater noise,” IEEE Trans.
Acoust., Speech Signal Process., vol. 37, no. 5, pp. 621–626, May 1989.

[5] N. Azzaoui and L. Clavier, “Statistical channel model based on α-
stable random processes and application to the 60 GHz ultra wide
band channel,” IEEE Trans. Commun., vol. 58, no. 5, pp. 1457–1467,
May 2010.

[6] J. P. Nolan, “Modeling financial data with stable distributions,” in
Handbook of Heavy-Tailed Distributions in Finance, vol. 1, S. T. Rachev,
Ed. Amsterdam, The Netherlands: Elsevier, 2003, pp. 105–130.

[7] D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, and E. W. Lang, “Why
using the alpha-stable distribution in NeuroImage?” in Proc. 11th Int.
Conf. Signal Process. Multimedia Appl., 2014, pp. 297–301.

[8] E. Masry, “Alpha-stable signals and adaptive filtering,” IEEE Trans.
Signal Process., vol. 48, no. 11, pp. 3011–3016, Nov. 2000.

[9] V. C. Gogineni, S. P. Talebi, S. Werner, and D. P. Mandic, “Fractional-
Order correntropy adaptive filters for distributed processing of α-stable
signals,” IEEE Signal Process. Lett., vol. 27, pp. 1884–1888, 2020.

[10] A. Singh and J. C. Principe, “Using correntropy as a cost function in
linear adaptive filters,” in Proc. Int. Joint Conf. Neural Netw., 2009,
pp. 2950–2955.

[11] K. Xiong, W. Shi, and S. Wang, “Robust multikernel maximum corren-
tropy filters,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 6,
pp. 1159–1163, Jun. 2020.

[12] W. Shi, Y. Li, and B. Chen, “A separable maximum correntropy adaptive
algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 11,
pp. 2797–2801, Nov. 2020.

[13] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: Properties
and applications in non-Gaussian signal processing,” IEEE Trans. Signal
Process., vol. 55, no. 11, pp. 5286–5298, Nov. 2007.

[14] B. Chen, L. Xing, H. Zhao, N. Zheng, and J. C. Príncipe, “Generalized
correntropy for robust adaptive filtering,” IEEE Trans. Signal Process.,
vol. 64, no. 13, pp. 3376–3387, Jul. 2016.

[15] F. Huang, J. Zhang, and S. Zhang, “Adaptive filtering under a variable
kernel width maximum correntropy criterion,” IEEE Trans. Circuits
Syst. II, Exp. Briefs, vol. 64, no. 10, pp. 1247–1251, Oct. 2017.

[16] V. C. Gogineni, S. P. Talebi, S. Werner, and D. P. Mandic, “Fractional-
order correntropy filters for tracking dynamic systems in α-stable
environments,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 67, no. 12,
pp. 3557–3561, Dec. 2020.

[17] G. Jumarie, “On the derivative chain-rules in fractional calculus via
fractional difference and their application to systems modelling,” Open
Phys., vol. 11, no. 6, pp. 617–633, Jan. 2013.

[18] S. H. Mirfarshbafan et al., “Beamspace channel estimation for mas-
sive MIMO mmWave systems: Algorithm and VLSI design,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 5482–5495,
Dec. 2020.

[19] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V. Anderson,
“LMS adaptive filters using distributed arithmetic for high throughput,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337,
Jul. 2005.

[20] S. Mula, V. C. Gogineni, and A. S. Dhar, “Robust proportionate
adaptive filter architectures under impulsive noise,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 27, no. 5, pp. 1223–1227,
May 2019.

[21] V. C. Gogineni and S. Mula, “Improved proportionate-type sparse
adaptive filtering under maximum correntropy criterion in impulsive
noise environments,” Digit. Signal Process., vol. 79, pp. 190–198,
Aug. 2018.

[22] W. Chen, L. Qi, and F. Yanjun, “An improved least square channel
estimation algorithm for underwater acoustic OFDM systems,” in Proc.
2nd Int. Conf. Future Comput. Commun., 2010, pp. V3-577–V3-580.

[23] X.-L. Shi and Y.-X. Yang, “Adaptive sparse channel estimation based
on RLS for underwater acoustic OFDM systems,” in Proc. 6th Int.
Conf. Instrum. Meas., Comput., Commun. Control (IMCCC), Jul. 2016,
pp. 266–269.

[24] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. Hoboken, NJ, USA: Wiley, 2007.

[25] S. C. Schwartz, J. B. Thomas, and E. J. Wegman, Topics in Non-
Gaussian Signal Processing. New York, NY, USA: Springer, 1989.

[26] O. Arikan, M. Belge, A. E. Cetin, and E. Erzin, “Adaptive filtering
approaches for non-Gaussian stable processes,” in Proc. Int. Conf.
Acoust., Speech, Signal Process., 1995, pp. 1400–1403.

[27] S. P. Talebi, S. Werner, and D. Mandic, “Distributed adaptive filtering
of alpha-stable signals,” IEEE Signal Process. Lett., vol. 25, no. 10,
pp. 1450–1454, 2018.

[28] S. P. Talebi, S. Werner, S. Li, and D. P. Mandic, “Tracking dynamic
systems in α-stable environments,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2019, pp. 4853–4857.

[29] S. Mula, V. C. Gogineni, and A. S. Dhar, “Algorithm and architec-
ture design of adaptive filters with error nonlinearities,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 9, pp. 2588–2601,
Sep. 2017.

[30] J. N. Mitchell, “Computer multiplication and division using binary
logarithms,” IRE Trans. Electron. Comput., vol. 11, no. 4, pp. 512–517,
Aug. 1962.

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

[31] S. M. Aroutchelvame and K. Raahemifar, “An efficient algorithm and
architecture for natural logarithm using Maclaurin series,” in Proc. 12th
IEEE Int. Conf. Electron., Circuits Syst., Dec. 2005, pp. 1–4.

[32] P. Nilsson, A. U. R. Shaik, R. Gangarajaiah, and E. Hertz, “Hardware
implementation of the exponential function using Taylor series,” in Proc.
NORCHIP, Oct. 2014, pp. 1–4.

[33] P. K. Meher and S. Y. Park, “Critical-path analysis and low-complexity
implementation of the LMS adaptive algorithm,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 61, no. 3, pp. 778–788, Mar. 2014.

[34] T. C. Denk and K. K. Parhi, “Exhaustive scheduling and retiming of
digital signal processing systems,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 45, no. 7, pp. 821–838, Jul. 1998.

Daney Alex received the bachelor’s degree in
electronics and communication engineering from
the Cochin University of Science and Technol-
ogy, Kochi, India, in 2018. He is currently work-
ing toward the M.S. by Research degree at the
Department of Electrical Engineering, IIT Palakkad,
Kozhippara, India.

His research interests include VLSI signal process-
ing and machine learning architectures, and algo-
rithms and architectures for adaptive filters.

Vinay Chakravarthi Gogineni (Member, IEEE)
received the bachelor’s degree in electronics and
communication engineering from Jawaharlal Nehru
Technological University, Andhra Pradesh, India,
in 2005, the master’s degree in communication engi-
neering from the Vellore Institute of Technology,
Vellore, India, in 2008, and the Ph.D. degree in
electronics and electrical communication engineer-
ing from IIT Kharagpur, Kharagpur, India, in 2019.

From 2008 to 2011, he was with a couple of MNCs
in India. He is currently a Postdoctoral Research

Fellow with the Department of Electronic Systems, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway. His research interests
include statistical signal processing, signal processing and machine learning
over graphs, and federated learning.

Dr. Gogineni was a recipient of the ERCIM Alain Bensoussan Fellowship
in 2019 and the Best Paper Award at APSIPA ASC-2021, Tokyo, Japan.

Subrahmanyam Mula (Member, IEEE) received
the B.E. degree in electronics and communication
engineering from Andhra University, Visakhapat-
nam, India, in 2001, the M.Tech. degree in micro-
electronics and VLSI design from the IIT Kharagpur,
Kharagpur, India, in 2003, and the Ph.D. degree from
the Department of Electronics and Electrical Com-
munication Engineering, IIT Kharagpur, in 2018.

From 2003 to 2014, he was with Intel, Bengaluru,
India, where he was involved in front-end design
verification of gigabit Ethernet switches, processors,

chipsets, and GPUs. He is currently an Assistant Professor with the Depart-
ment of Electrical Engineering, IIT Palakkad, Kozhippara, India. His current
research interests include digital VLSI circuits and systems, VLSI signal
processing, and machine learning architectures.

Stefan Werner (Senior Member, IEEE) received
the M.Sc. degree in electrical engineering from the
Royal Institute of Technology, Stockholm, Sweden,
in 1998, and the D.Sc. degree (Hons.) in electrical
engineering from the Signal Processing Laboratory,
Helsinki University of Technology, Espoo, Finland,
in 2002.

He was a Visiting Melchor Professor with the
University of Notre Dame, Notre Dame, IN, USA,
in 2019, and held an Academy Research Fel-
lowship, funded by the Academy of Finland,

from 2009 to 2014. He is currently a Professor with the Department of
Electronic Systems and the Director of IoT@NTNU, Norwegian University of
Science and Technology (NTNU), Trondheim, Norway. He is also an Adjunct
Professor with Aalto University, Espoo, and an Adjunct Senior Research
Fellow with the Institute for Telecommunications Research, University of
South Australia, Adelaide. His research interests include adaptive and sta-
tistical signal processing, signal processing for communications, and security
and privacy in cyber-physical systems.

Prof. Werner is a member of the Editorial Board of the EURASIP Jour-
nal of Signal Processing and the IEEE TRANSACTIONS ON SIGNAL AND

INFORMATION PROCESSING OVER NETWORKS.

Authorized licensed use limited to: Indian Institute of Technology Palakkad. Downloaded on May 09,2022 at 04:12:36 UTC from IEEE Xplore. Restrictions apply.

