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Let H1,H2 be complex Hilbert spaces andT be a densely defined closed linear operator from its

domainD(T ), a dense subspace ofH1, into H2. Let N(T ) denote the null space ofT andR(T )

denote the range ofT .

Recall thatC(T ) := D(T ) ∩N(T )⊥ is called thecarrier space ofT and thereduced minimum

modulusγ(T ) of T is defined as:

γ(T ) := inf{‖T (x)‖ : x ∈ C(T ), ‖x‖ = 1}.

Further, we say thatT attains its reduced minimum modulusif there existsx0 ∈ C(T ) such that

‖x0‖ = 1 and‖T (x0)‖ = γ(T ). We discuss some properties of operators that attain reduced

minimum modulus. In particular, the following results are proved.

1. The operatorT attains its reduced minimum modulus if and only if its Moore-Penrose

inverseT † is bounded and attains its norm, that is, there existsy0 ∈ H2 such that‖y0‖ = 1

and‖T †‖ = ‖T †(y0)‖.
2. For eachε > 0, there exists a bounded operatorS such that‖S‖ ≤ ε andT + S attains its

reduced minimum.

Key words : Densely defined operator; closed operator; reduced minimum modulus; minimum

modulus; minimum attaining operator; reduced minimum attaining operator; gap metric; carrier

graph topology; Moore-Penrose inverse.
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1. INTRODUCTION

Let H1 andH2 be complex Hilbert spaces andT : H1 → H2 be a bounded linear operator. We

sayT to benorm attainingif there existsx0 ∈ H1 such that‖x0‖ = 1 and‖Tx0‖ = ‖T‖. The

norm attaining operators are well studied in the literature by several authors (see [22] for details and

references therein). A well known theorem in this connection is the Lindestrauss theorem which

asserts the denseness of norm attaining operators in the space of bounded linear operators between

two Hilbert spaces with respect to the operator norm (see for example, [6] for a simple proof of this

fact).

A natural analogue for this class of operators is the class of minimum attaining operators. Recall

that a bounded operatorT : H1 → H2 is said to beminimum attaining, if there existsx0 ∈ H1 with

‖x0‖ = 1 such that‖Tx0‖ = m(T ), theminimum modulusof T . This class of operators was first

introduced by Carvajal and Neves in [5] and several basic properties were also studied in the line of

norm attaining operators.

A Lindenstrauss type theorem for minimum attaining operators is proved in [16]. Moreover, rank

one perturbations of closed operators is also discussed.

In this article, we define operators that attain the reduced minimum modulus and establish several

basic properties of such operators. We prove that if a densely defined closed operatorT attains its

reduced minimum, then its Moore-Penrose inverseT † is bounded and attains its norm. It turns out that

this class is a subclass of minimum attaining operators as well as the class of closed range operators.

Finally, we observe that this class is dense in the class of densely defined closed operators with respect

to the gap metric as well as with respect to the carrier graph topology (see [13] for details). We prove

several consequences of this result.

In the second section we summarize without proofs the relevant material on densely defined closed

operators, the gap metric and the carrier graph topology. In the third section we define the reduced

minimum attaining operators, prove some of the basic and important properties of such operators and

compare with those of minimum attaining operators. In proving most of our results, we make use of

the corresponding result for minimum attaining operators, which can be found in [16] and [11].

2. PRELIMINARIES

Throughout we consider infinite dimensional complex Hilbert spaces which will be denoted byH, H1,H2

etc. The inner product and the induced norm are denoted by〈·〉 and||.||, respectively. The closure of

a subspaceM of H is denoted byM . We denote the unit sphere ofM by SM = {x ∈ M : ‖x‖ = 1}.
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Let T be a linear operator with domainD(T ), a subspace ofH1 and taking values inH2. If D(T )

is dense inH1, thenT is called adensely defined operator.

The graphG(T ) of T is defined byG(T ) := {(x, Tx) : x ∈ D(T )} ⊆ H1 × H2. If G(T )

is closed, thenT is called aclosed operator. Equivalently,T is closed if and only if if(xn) is a

sequence inD(T ) such thatxn → x ∈ H1 andTxn → y ∈ H2, thenx ∈ D(T ) andTx = y.

For a densely defined operator, there exists a unique linear operator (in fact, a closed operator)

T ∗ : D(T ∗) → H1, with

D(T ∗) := {y ∈ H2 : x → 〈Tx, y〉 for all x ∈ D(T ) is continuous} ⊆ H2

satisfying〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ D(T ) andy ∈ D(T ∗).

We sayT to be bounded if there existsM > 0 such that‖Tx‖ ≤ M‖x‖ for all x ∈ D(T ). Note

that if T is densely defined and bounded thenT can be extended to all ofH1 in a unique way.

By the closed graph Theorem [21], an everywhere defined closed operator is bounded. Hence the

domain of an unbounded closed operator is a proper subspace of a Hilbert space.

The space of all bounded linear operators betweenH1 andH2 is denoted byB(H1,H2) and the

class of all densely defined, closed linear operators betweenH1 andH2 is denoted byC(H1,H2). We

writeB(H,H) = B(H) andC(H, H) = C(H).

If T ∈ C(H1,H2), then the null space and the range space ofT are denoted byN(T ) andR(T )

respectively and the spaceC(T ) := D(T ) ∩ N(T )⊥ is called thecarrier of T . In fact, D(T ) =

N(T )⊕⊥ C(T ) [2, page 340].

Let TC := T |C(T ). As C(T ) = N(T )⊥ (see [13, Lemma 3.3] for details),T ∈ C(N(T )⊥,H2).

Let S, T ∈ C(H) be operators with domainsD(S) and D(T ), respectively. ThenS + T is

an operator with domainD(S + T ) = D(S) ∩ D(T ) defined by(S + T )(x) = Sx + Tx for all

x ∈ D(S+T ). The operatorST has the domainD(ST ) = {x ∈ D(T ) : Tx ∈ D(S)} and is defined

as(ST )(x) = S(Tx) for all x ∈ D(ST ).

If S andT are closed operators with the property thatD(T ) ⊆ D(S) andTx = Sx for all

x ∈ D(T ), thenT is called therestrictionof S andS is called anextensionof T . We denote this by

T ⊆ S.

An operatorT ∈ C(H) is said to benormal if T ∗T = TT ∗, self-adjointif T = T ∗, symmetricif

T ⊆ T ∗, positiveif T = T ∗ and〈Tx, x〉 ≥ 0 for all x ∈ D(T ).
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Let V ∈ B(H1, H2). ThenV is called anisometryif ‖V x‖ = ‖x‖ for all x ∈ H1 and a partial

isometryif V |N(V )⊥ is an isometry. The spaceN(V )⊥ is called theinitial spaceor theinitial domain

and the spaceR(V ) is called thefinal spaceor thefinal domainof V .

If M is a closed subspace of a Hilbert spaceH, thenPM denotes the orthogonal projection

PM : H → H with rangeM .

Here we recall definition and properties of the Moore-Penrose inverse (or generalized inverse) of

a densely defined closed operator that we need for our purpose.

Definition2.1 — (Moore-Penrose Inverse) [2, Pages 314, 318-320]. LetT ∈ C(H1, H2). Then

there exists a unique operatorT † ∈ C(H2,H1) with domainD(T †) = R(T )⊕⊥ R(T )⊥ and has the

following properties:

1. TT †y = P
R(T )

y, for all y ∈ D(T †)

2. T †Tx = PN(T )⊥ x, for all x ∈ D(T )

3. N(T †) = R(T )⊥.

This unique operatorT † is called theMoore-Penrose inverseor thegeneralized inverseof T .

The following property ofT † is also well known.

For everyy ∈ D(T †), let

L(y) :=
{

x ∈ D(T ) : ||Tx− y|| ≤ ||Tu− y|| for all u ∈ D(T )
}

.

Here anyu ∈ L(y) is called aleast square solutionof the operator equationTx = y. The vector

T †y ∈ L(y), ||T †y|| ≤ ||x|| for all x ∈ L(y) and it is called theleast square solution of minimal

norm. A different treatment ofT † is given in [2, Pages 336, 339, 341], where it is called “the Maximal

Tseng generalized Inverse”.

Theorem2.2— [2, Page 320]. LetT ∈ C(H1,H2). Then

1. D(T †) = R(T )⊕⊥ R(T )⊥, N(T †) = R(T )⊥ = N(T ∗)

2. R(T †) = C(T )

3. T † ∈ C(H2,H1)

4. T † is continuous if and onlyR(T ) is closed
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5. T †† = T

6. T ∗† = T †∗

7. N(T ∗†) = N(T )

8. T ∗T andT †T ∗† are positive and(T ∗T )† = T †T ∗†

9. TT ∗ andT ∗†T † are positive and(TT ∗)† = T ∗†T †.

Definition 2.3 — [6]. LetT ∈ B(H1,H2). ThenT is said to benorm attainingif there exists

x0 ∈ SH1 such that‖Tx0‖ = ‖T‖.

We denote the set of all norm attaining operators betweenH1,H2 byN (H1,H2) andN (H, H)

byN (H).

Definition2.4 — [2, 7, 24]. LetT ∈ C(H1,H2). Then

m(T ) := inf {‖Tx‖ : x ∈ SD(T )}
γ(T ) := inf {‖Tx‖ : x ∈ SC(T )},

are called theminimum modulusand thereduced minimum modulusof T , respectively. The operator

T is said to be bounded below if and only ifm(T ) > 0.

Remark2.5 : If T ∈ C(H1,H2), then

(a) m(T ) ≤ γ(T ) and equality holds ifT is one-to-one

(b) m(T ) > 0 if and only if R(T ) is closed andT is one-to-one.

Proposition2.6 — [2, 10]. LetT ∈ C(H1,H2). Then the following statements are equivalent;

1. R(T ) is closed

2. R(T ∗) is closed

3. T0 := T |C(T ) has a bounded inverse

4. γ(T ) > 0

5. T † is bounded. In fact,‖T †‖ = 1
γ(T )

6. R(T ∗T ) is closed
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7. R(TT ∗) is closed.

Remark2.7 : If T ∈ C(H) andT−1 ∈ B(H), thenm(T ) = 1
‖T−1‖ , by (5) of Proposition 2.6.

Theorem2.8 — [Theorem 13.31, page 349], [3, Theorem 4, page 144]. LetT ∈ C(H) be

positive. Then there exists a unique positive operatorS such thatT = S2.

Theorem2.9— [3, Theorem 2, page 184]. LetT ∈ C(H1, H2). Then there exists a unique partial

isometryV : H1 → H2 with initial spaceR(T ∗) and rangeR(T ) such thatT = V |T |.

Remark2.10 : ForT ∈ C(H1,H2), the operator|T | := (T ∗T )
1
2 is called the modulus ofT .

Moreover,D(|T |) = D(T ), N(|T |) = N(T ) andR(|T |) = R(T ∗). As ‖Tx‖ = ‖|T |x‖ for all

x ∈ D(T ), we can conclude thatm(T ) = m(|T |), andγ(T ) = γ(|T |).

Definition2.11 — [21, page 346]. LetT ∈ C(H). The resolvent ofT is defined by

ρ(T ) := {λ ∈ C : T − λI : D(T ) → H is invertible and(T − λI)−1 ∈ B(H)}

and

σ(T ) : = C \ ρ(T )

σp(T ) : = {λ ∈ C : T − λI : D(T ) → H is not one-to-one},

are called thespectrumand thepoint spectrumof T , respectively.

The operatorS is called the square root ofT and is denoted byS = T
1
2 .

Definition2.12 — [10, Page 267]. LetT ∈ C(H). Then thenumerical rangeof T is defined by

W (T ) :=
{
〈Tx, x〉 : x ∈ SD(T )

}
.

The following Proposition is proved in [17, Chapter 10] for regular (unbounded) operators be-

tween HilbertC∗-modules, which is obviously true for densely defined closed operators in a Hilbert

space.

Proposition2.13 — [23, Lemma 5.8]. LetT ∈ C(H). LetQT := (I +T ∗T )−
1
2 andFT := TQT .

Then

1. QT ∈ B(H) and0 ≤ QT ≤ I

2. R(QT ) = D(T )

3. (FT )∗ = FT ∗
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4. ‖FT ‖ < 1 if and only if T ∈ B(H1,H2)

5. T = FT (I − F ∗
T FT )−

1
2

6. QT = (I − F ∗
T FT )

1
2 .

The operatorFT is called the bounded transform ofT or thez-transform ofT .

Lemma2.14 — [8, 9, 19]. LetT ∈ C(H1, H2). DenoteŤ = (I +T ∗T )−1 andT̂ = (I +TT ∗)−1.

Then

1. Ť ∈ B(H1), T̂ ∈ B(H2)

2. T̂ T ⊆ T Ť , ||T Ť || ≤ 1
2

andŤ T ∗ ⊆ T ∗T̂ , ||T ∗T̂ || ≤ 1
2

.

One of the most useful and well studied metric onC(H1,H2) is the gap metric. Here we give

some details.

Definition2.15 — (Gap between subspaces). [10, page 197]. LetH be a Hilbert space andM,N

be closed subspaces ofH. Let P = PM andQ = PN . Then the gap betweenM andN is defined by

θ(M, N) = ‖P −Q‖.

If S, T ∈ C(H1,H2), thenG(T ), G(S) ⊆ H1×H2 are closed subspaces. The gap betweenG(T )

andG(S) is called the gap betweenT andS. For a deeper discussion on these concepts we refer to

[10, Chapter IV] and [1, page 70].

OnB(H), the norm topology and the topology induced by the gap metric are the same. This can

be seen from the following inequalities.

Theorem2.16— [18, Theorem 2.5]. LetA,B ∈ B(H). Then

θ(A,B) ≤ ‖A−B‖ ≤
√

1 + ‖A‖2
√

1 + ‖B‖2 θ(A,B).

We remark that though the above result is stated for operators defined on a Hilbert space, it

remains true for operators defined between two different Hilbert spaces.

Definition2.17 — LetT ∈ C(H1, H2). Define theCarrier Graph ofT by

GC(T ) := {(x, Tx) : x ∈ C(T )} ⊆ H1 ×H2.

ForS, T ∈ C(H1, H2), the gap betweenGC(S) andGC(T ) is denoted by,

η(S, T ) = ‖PGC(S) − PGC(T )‖.
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The topology induced by the metricη(·, ·) onC(H1, H2) is called theCarrier Graph Topology.

To computeη(S, T ) we can use the following formula;

Theorem2.18— LetT, S ∈ C(H1,H2). Then

|η(T, S)− θ(N(T ), N(S))| ≤ θ(T, S) ≤ η(T, S) + θ(N(T ), N(S)).

If N(T ) = N(S), by Theorem 2.19, we can conclude thatη(S, T ) = θ(S, T ). For the details of

this metric we refer to [13].

3. MAIN RESULTS

In this section we define reduced minimum modulus attaining operators and discuss their properties.

Recall thatT ∈ C(H1,H2) is called minimum attaining if there existsx0 ∈ SD(T ) such that‖Tx0‖ =

m(T ). In particular, ifT ∈ B(H1,H2), thenT is minimum attaining if there existsx0 ∈ SH1 such

that‖Tx0‖ = m(T ).

We denote the class of minimum attaining densely defined closed operators betweenH1 andH2

byMc(H1,H2) andMc(H, H) byMc(H). The class of bounded minimum attaining operators is

denoted byM(H1,H2) andM(H,H) byM(H).

We propose the following definition;

Definition3.1 — We sayT ∈ C(H1,H2) to bereduced minimum attainingif there existsx0 ∈
SC(T ) such that‖Tx0‖ = γ(T ).

The class of reduced minimum attaining densely defined closed linear operators betweenH1 and

H2 is denoted byΓc(H1, H2). If H1 = H2 = H, then we writeΓc(H1,H2) by Γc(H). The class

of bounded operators which attain the reduced minimum is denoted byΓ(H1,H2) andΓ(H, H) is

denoted byΓ(H).

Theorem3.2 — Let T ∈ C(H1,H2). ThenT attains its reduced minimum if and only ifT † is

bounded and attains its norm.

PROOF: SupposeT attains its reduced minimum. Then there existsx0 ∈ C(T ) such that‖x0‖ =

1 and‖T (x0)‖ = γ(T ). We must haveγ(T ) > 0 as otherwisex0 ∈ N(T ) will imply x0 = 0, a

contradiction. By Proposition 2.6,T † is bounded. Lety0 = T (x0)/‖T (x0)‖ = T (x0)/γ(T ). Then

‖y0‖ = 1 and

‖T †(y0)‖ = ‖T †T (x0)‖/γ(T ) = ‖x0‖/γ(T ) = 1/γ(T ) = ‖T †‖.
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ThusT † attains its norm.

Conversely, assume thatT † is bounded and attains its norm. Then there existsy0 ∈ H2 such that

‖y0‖ = 1 and‖T †(y0)‖ = ‖T †‖. Let y0 = u + v whereu ∈ R(T ) andv ∈ R(T )⊥. Supposev 6= 0.

Then‖u‖ < 1. Hence

‖T †‖ = ‖T †(y0)‖ = ‖T †(u)‖ ≤ ‖T †‖‖u‖ < ‖T †‖,

a contradiction. This implies thatv = 0, hencey0 ∈ R(T ). Thus there existsx0 ∈ C(T ) such

thaty0 = T (x0). Thenx0 = T †(y0), hence‖x0‖ = ‖T †‖. Let z0 = x0/‖x0‖. Thenz0 ∈ C(T ),

‖z0‖ = 1 and

‖T (z0)‖ = ‖y0‖/‖x0‖ = 1/‖T †‖ = γ(T ).

ThusT attains the reduced minimum modulus. 2

Corollary 3.3 — LetT ∈ C(H1,H2). SupposeT is one-to-one. Then the following are equiva-

lent.

1. T ∈Mc(H1,H2)

2. T ∈ Γc(H1,H2)

3. T † ∈ B(H2,H1) and attains its norm.

PROOF : SinceT is injective,N(T ) = {0}. HenceC(T ) = D(T ) andγ(T ) = m(T ). This

shows equivalence of (1) and (2). Equivalence of (2) and (3) follows from Theorem 3.2. 2

Lemma3.4 — LetT ∈ C(H1,H2). ThenT ∈ Γc(H1,H2) if and only if TC ∈Mc(N(T )⊥,H2).

PROOF : The proof follows from the fact thatm(TC) = γ(T ). 2

Proposition3.5 — LetT ∈ Γc(H1,H2). ThenR(T ) is closed.

PROOF : This follows from Theorem 3.2 and Proposition 2.6. 2

Example3.6 : (1) All orthogonal projections on a Hilbert space attain their reduced minimum

(2) An operator with non closed range cannot attain its reduced minimum.

Proposition3.7 — LetT ∈ C(H1,H2). ThenT ∈ Γc(H1,H2) if and only if |T | ∈ Γc(H1).

PROOF : By definitionD(|T |) = D(T ) andN(|T |) = N(T ). HenceC(|T |) = C(T ). Also,

‖Tx‖ = ‖|T |x‖ for all x ∈ D(T ). ThusT ∈ Γc(H1,H2) if and only if |T | ∈ Γc(H1). 2
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Proposition3.8 — [14, Proposition 4.2]. LetT = T ∗ ∈ C(H). Thenγ(T ) = d(0, σ(T ) \ {0}).

Lemma3.9 —

1. Let T ∈ C(H) be self-adjoint. Thenm(T ) = d(0, σ(T ))

2. If T ∈ C(H1,H2), thenm(T ) ∈ σ(|T |). In particular, ifH1 = H2 = H andT ≥ 0, then

m(T ) ∈ σ(T ).

PROOF : Proof of (1): If T is not invertible, then0 ∈ σ(T ) andT is not bounded below. Hence

in this casem(T ) = 0 = d(0, σ(T )).

Next assume that0 /∈ σ(T ). Sinceσ(T ) is closed ([23, Proposition 2.6, Page 29]), we can

conclude thatd(0, σ(T )) > 0. Also, asT−1 ∈ B(H), T must be bounded below. Hencem(T ) > 0.

In this case,m(T ) = γ(T ). Now, by Proposition 3.8, we havem(T ) = γ(T ) = d(0, σ(T ) \ {0}) =

d(0, σ(T )).

Proof of (2): Note that|T | ≥ 0 and by (1), we have thatm(T ) = m(|T |) = d(0, σ(|T |)). Since,

σ(|T |) is closed, we can conclude thatm(T ) ∈ σ(|T |). If H1 = H2 = H andT ≥ 0, then we have

|T | = T . Hence in this case the result follows. 2

Remark3.10 : LetT ∈ C(H) be normal. Then we can prove the formulam(T ) = d(0, σ(T )).

First note that the crucial point in proving this in the self-adjoint case is Proposition 3.8. This is proved

for normal operators in [12, Theorem 4.4.5]. Now following along the similar lines of Proposition

3.9, we can obtain the formula.

Proposition3.11 — LetT = T ∗ ∈ C(H). ThenT ∈ Γc(H) if and only if eitherγ(T ) or−γ(T )

is an eigenvalue ofT . In particular, ifT ≥ 0, thenT ∈ Γc(H) if and only if γ(T ) is an eigenvalue of

T .

PROOF : We have by Lemma 3.4, thatT ∈ Γc(H) if and only if TC ∈ M(N(T )⊥). As N(T )⊥

is a reducing subspace forT , TC is self-adjoint. Now,TC ∈ M(N(T )⊥) if and only eitherm(TC)

or−m(TC) is an eigenvalue forTC and hence forT . Sincem(TC) = γ(T ), the conclusion follows.

In particular, ifT ≥ 0, the eigenvalues ofT are positive, so we can conclude thatT ∈ Γc(H) if and

only if γ(T ) ∈ σp(T ). 2

Proposition3.12 — LetT ∈ C(H1,H2). ThenT ∈ Γc(H1,H2) if and only if T ∗T ∈ Γc(H1).

PROOF : By Theorem 3.2,T ∈ Γc(H1,H2) if and only if R(T ) is closed andT † ∈ M(H2, H1).

This is equivalent to the condition that(T ∗)† = (T †)∗ ∈ M(H1,H2). This is in turn equivalent to
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the fact that(T †)(T †)∗ ∈ M(H2). But (T †)(T †)∗ = (T ∗T )†, by Theorem 2.2. Thus by Theorem

3.2,T ∗T ∈ Γc(H1). 2

Proposition3.13 — LetT ∈ C(H1,H2). ThenT ∈ Γc(H1,H2) if and only if T ∗ ∈ Γc(H2,H1).

PROOF: If T ∈ Γc(H1,H2), thenR(T ) is closed and so isR(T ∗). Also, we haveγ(T ) = γ(T ∗).

By Theorem 3.2,T † ∈ N (H2, H1). Also, (T †)∗ ∈ N (H1,H2), by [4, Proposition 2.5]. Note that

(T †)∗ = (T ∗)†, by Theorem 2.2. Hence by Theorem 3.2 again,T ∗ ∈ Γc(H2,H1). Applying the

same result forT ∗ and observing thatT ∗∗ = T , we get the other way implication. 2

Remark3.14 : The above result need not hold for minimum attaining operators. LetH = `2 and

{en : n ∈ N} denote the standard orthonormal basis forH. That isen(m) = δnm, the Kronecker

delta function. Define operatorsD,R : H → H by

Den =
1
n

en,

Ren = en+1 for eachn ∈ N.

LetT = RD. SinceR is an isometry, we havem(T ) = m(D) = d(0, σ(D)) = inf
{ 1

n
: n ∈ N

}
=

0. Since0 /∈ σp(D), D is not minimum attaining. ThusT is not minimum attaining. But,N(T ∗) =

span{e1}. Som(T ∗) = 0 andT ∗ ∈ M(H). Note thatT ∗T = D2 cannot have closed range since

D is compact. Equivalently,R(T ) is not closed, whenceT cannot attain its reduced minimum by

Theorem 3.2.

Proposition3.15 — LetT ∈ C(H1,H2). If T ∈ Γc(H1,H2), thenT ∈Mc(H1,H2).

PROOF : First assume thatT is one-to-one. Thenγ(T ) = m(T ). Hence ifT ∈ Γc(H1,H2), then

clearlyT ∈ Mc(H1,H2). If T is not one-to-one, thenN(T ) 6= {0}. Hence in this casem(T ) = 0

and there exists0 6= x ∈ N(T ) such thatTx = 0. Hence clearlyT ∈ Mc(H1,H2). This completes

the proof. 2

Proposition3.16 — [11, Proposition 3.5]. LetT ∈ C(H) be positive. Then

m(T ) = inf {〈Tx, x〉 : x ∈ SD(T )}.

In particular, ifT ∈ C(H1, H2), thenm(T ∗T ) = m(T )2.

Proposition3.17 — LetT ∈ C(H) be positive. Then

γ(T ) = inf {〈Tx, x〉 : x ∈ SC(T )}.

In particular, ifT ∈ C(H1, H2), thenγ(T ∗T ) = γ(T )2.
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PROOF : Since,TC is positive, we have by Proposition 3.16,

γ(T ) = m(TC) = inf {〈TCx, x〉 : x ∈ SC(T )}
= inf {〈Tx, x〉 : x ∈ SC(T )}.

Further, ifT ∈ C(H1, H2), thenT ∗T ∈ C(H1) is positive. Thus by applying the above formula

for T ∗T and by the definition ofγ(T ), we get the conclusion.

Remark3.18 : LetT ∈ C(H) be positive. Then the following statements are equivalent (see [11,

Proposition 3.8]):

(1) T ∈Mc(H)

(2) m(T ) is an eigenvalue ofT

(3) m(T ) is an extreme point ofW (T ).

In general ifT ∈ Γc(H) and is positive, thenγ(T ) need not be an extreme point of the numerical

range ofT . To see this, consider the operatorT onC3, whose matrix with respect to the standard

orthonormal basis ofC3 is




0 0 0

0 1
2 0

0 0 1


. It can be easily computed thatγ(T ) = 1

2 , which is not an

extreme point ofW (T ) = [0, 1], butm(T ) = 0, which is an extreme point ofW (T ).

Proposition3.19 — LetT ∈ C(H1,H2) andFT be the bounded transform ofT . Then

(1) γ(FT ) =
γ(T )√

1 + γ(T )2

(2) m(FT ) =
m(T )√

1 + m(T )2
.

PROOF : Proof of (1): In view of Proposition 3.17 it is enough to show thatγ(F ∗
T FT ) =

γ(T ∗T )
1 + γ(T ∗T )

. First we note thatF ∗
T FT = T ∗T (I + T ∗T )−1 = I − (I + T ∗T )−1. Using the

formula in Proposition 3.8, we get

γ(F ∗
T FT ) = d(0, σ(F ∗

T FT ) \ {0})
= inf { µ

1 + µ
: µ ∈ σ(T ∗T ) \ {0}}

= inf {1− 1
1 + µ

: µ ∈ σ(T ∗T ) \ {0}}
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= 1− sup { 1
1 + µ

: µ ∈ σ(T ∗T ) \ {0}}

= 1− 1
1 + inf {µ : µ ∈ σ(T ∗T ) \ {0}}

=
γ(T ∗T )

1 + γ(T ∗T )
.

Hence we can conclude thatγ(FT ) =
γ(T )√

1 + γ(T )2
.

Proof of (2): To prove this we need to use (1) of Lemma 3.9 and follow the similar steps as

above. 2

Proposition3.20 — LetT ∈ C(H1,H2). ThenT ∈ Γc(H1,H2) if and only if FT ∈ Γ(H1,H2).

PROOF : In view of Proposition 3.12, it suffices to show thatT ∗T ∈ Γc(H1) if and only if

F ∗
T FT ∈ Γ(H1). First, note that(FT )∗ = FT ∗ . If T ∗T ∈ Γc(H1), there existsx0 ∈ SC(T ∗T ) such

thatT ∗Tx0 = γ(T ∗T )x0. Then we have

F ∗
T FT x0 =

(
I − (I + T ∗T )−1

)
x0

=
γ(T ∗T )

1 + γ(T ∗T )
x0

=
γ(T )2

1 + γ(T )2
x0

= γ(FT )2x0

= γ(F ∗
T FT )x0.

This shows thatF ∗
T FT ∈ Γ(H1).

To prove the converse, supposeF ∗
T FT ∈ Γ(H1). ThenF ∗

T FT = FT ∗FT = T ∗T (I + T ∗T )−1 ∈
Γ(H1). Thus there existsx0 ∈ N((FT )∗FT )⊥ = N(FT )⊥ = N(T )⊥ such thatT ∗T (I+T ∗T )−1x0 =

γ(FT ∗FT )x0. By Proposition 3.19, we can obtain that

(I − (I + T ∗T )−1)(x0) =
(
1− (

1
1 + γ(T )2

)
)
(x0).

Equivalently,(I+T ∗T )−1(x0) =
1

1 + γ(T )2
x0. That isx0 ∈ R

(
(I+T ∗T )−1

)
= D(I+T ∗T ) =

D(T ∗T ). It follows that (I + T ∗T )(x0) = (1 + γ(T )2)(x0) or T ∗Tx0 = γ(T ∗T )x0, concluding

T ∗T attains its reduced minimum and so isT . 2

Next, we would like to prove a Lindenstrauss type theorem for the class of reduced minimum

attaining operators. We need the following results for this purpose.
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Theorem3.21 — [16, Theorem 3.1], [20, Remark 3.7]. LetS, T ∈ C(H1,H2) and D(S) =

D(T ). Then

1. the operatorŝT
1
2 (T − S)Š

1
2 andŜ

1
2 (T − S)Ť

1
2 are bounded and

θ(S, T ) = max
{
‖T̂ 1

2 (T − S)Š
1
2 ‖, ‖Ŝ 1

2 (T − S)Ť
1
2 ‖

}

2. if T − S is bounded, thenθ(S, T ) ≤ ‖S − T‖.

Theorem3.22 — [16, Theorem 3.5]. LetT ∈ C(H1, H2). Then for eachε > 0, there exists

S ∈ B(H1, H2) with ‖S‖ ≤ ε such thatS + T is minimum attaining andθ(S + T, T ) ≤ ε. More

over, ifm(T ) > 0, then we can chooseS to be a rank one operator.

Theorem3.23— LetT ∈ C(H1, H2). Then for eachε > 0 there existsS ∈ B(H1, H2) such that

1. ‖S‖ ≤ ε

2. N(T ) = N(T + S) and

3. T + S attains reduced minimum, andθ(S + T, T ) ≤∈

Moreover, ifγ(T ) > 0, then we can chooseS to be a rank one operator.

PROOF : First assume thatγ(T ) > 0. ConsiderTC := T |C(T ) : N(T )⊥ → H2 is densely

defined closed operator. We may assume that0 < ε < γ(T ). By Theorem 3.22, there existsS0 ∈
B(N(T )⊥,H2) such that‖S0‖ ≤ ε andTC + S0 is minimum attaining. That is, there existsx0 ∈
D(TC + S0) = D(TC) = C(T ) such that‖x0‖ = 1 and‖(TC + S0)(x0)‖ = m(TC + S0). As

m(TC) = γ(T ) > 0, we can chooseS0 to be a rank one operator.

For x = u + v ∈ H1 with u ∈ N(T ), v ∈ N(T )⊥, defineSx = S0v. Then‖Sx‖ = ‖S0v‖ ≤
‖S0‖‖v‖ ≤ ε‖x‖. Thus‖S‖ ≤ ε. Note thatS is a rank one operator.

We claim thatT + S attains reduced minimum. Note thatD(T + S) = D(T ). Let u ∈ N(T ).

Then (T + S)(u) = Tu + Su = 0. ThusN(T ) ⊆ N(T + S) = {x ∈ D(T ) : Tx + Sx = 0}.
Suppose thatx ∈ D(T ) \N(T ). Let x = u + v with u ∈ N(T ) andv ∈ N(T )⊥. Thenv 6= 0. Also,

v ∈ C(T ) asx, u ∈ D(T ). Then

‖(T + S)(x)‖ = ‖Tv + Sv‖
= ‖Tv + S0v‖
≥ ‖Tv‖ − ‖S0v‖
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≥ γ(T )‖v‖ − ‖S0‖‖v‖
≥ (γ(T )− ε)‖v‖
> 0.

Thus (T + S)(x) 6= 0. Thusx /∈ N(T + S). This show thatN(T ) = N(T + S). Since

D(T + S) = D(T ), we haveC(T + S) = C(T ) and hence

γ(T + S) = inf {‖(T + S)(x)‖ : x ∈ C(T ), ‖x‖ = 1}
= inf {‖(TC + S0)(x)‖ : x ∈ C(T ), ‖x‖ = 1}
= ‖(TC + S0)(x0)‖
= ‖(T + S)(x0)‖.

Next suppose thatγ(T ) = 0. Let ε > 0. Choosex0 ∈ C(T ) such that‖x0‖ = 1 and‖Tx0‖ <
ε

4
.

Then

‖(T +
ε

2
I)(x0)‖ ≥ ε

2
− ‖Tx0‖ ≥ ε

4
.

Hence

0 <
ε

4
≤ m(T +

ε

2
I) ≤ γ(T +

ε

2
).

By above argument, there exists̃S ∈ B(H1,H2) such that‖S̃‖ ≤ ε

2
andT +

ε

2
I + S̃ attains

reduced minimum. Then‖ ε

2
I + S̃‖ ≤ ε. TakeS =

ε

2
+ S̃. Then by Theorem 3.21,S satisfies all the

stated conditions. 2

We have the following consequences.

Theorem3.24— The following statements holds true;

1. Γc(H1,H2) is dense inC(H1,H2) with respect to the gap metricθ(·, ·)

2. Γc(H1,H2) is dense inC(H1,H2) with respect to the metricη(·, ·)

3. the set of all closed range operators ofC(H1,H2) is dense inC(H1,H2) with respect to the

metricθ(·, ·)

4. the set of all closed range operators ofC(H1,H2) is dense inC(H1,H2) with respect to the

metricη(·, ·).
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PROOF : Proof of (1): Follows by Theorem 3.23.

Proof of (2): Letε > 0. Then by Theorem 3.23, we can obtainS ∈ B(H1,H2) with ‖S‖ ≤ ε

such thatN(T ) = N(T + S) andθ(T, T + S) ≤ ε. By Theorem 2.19, it follows thatη(T + S, T ) =

θ(T + S, T ) ≤ ε. Hence the claim.

Proof of (3): SinceΓc(H1, H2) is a subset of the set of all closed range operators inC(H1, H2),

the conclusion is immediate by (2) above. 2

Proof of (4): This follows by Proposition 3.5 and (2) above. 2

Using the equivalence of the gap metric and the metric induced by the operator norm onB(H1,H2)

we can obtain the following consequences.

Corollary 3.25 — The following statements are true.

1. Γ(H1,H2) is dense inB(H1,H2) with respect to the operator norm

2. the set of all bounded closed range operators is dense inB(H1,H2) with respect to the operator

norm.
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