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Analysis of Electrostatic MEMS Using
Energy-Charge Landscape
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Abstract— A common way to analyze electrostatic
microelectromechanical systems (MEMS) actuators
is to use their energy-displacement landscape. Here,
we describe an alternative approach to analyze electrostatic
MEMS actuators using their energy-charge landscape.
This technique involves coordinate transformation
from displacement to charge, thereby formulating the
Hamiltonian of electrostatic MEMS actuators in terms
of charge. We investigate the use of the energy-charge
landscape to analyze static pull-in, dynamic pull-in,
and pull-out phenomena. The voltage expressions derived
using this method are identical with those derived using the
conventional energy-displacement landscape. In addition,
we also obtain the expressions for charge under static
and dynamic pull-in conditions. This work can aid in the
design and analysis of electrostatic MEMS devices. As a
case study, the analysis of a feedback capacitor-MEMS
actuator system is presented to illustrate the application of
the energy-charge landscape.

Index Terms— Electrostatic microelectromechanical
systems (MEMS) actuator, energy-charge landscape,
Hamiltonian, pull-in, pull-out.

I. INTRODUCTION

ELECTROSTATIC microelectromechanical systems (ME-
MS) actuators form the backbone of a wide range

of devices such as accelerometers, MEMS switches, dis-
play devices, and so on [1]–[3]. The popularity of these
devices is driven by the fact that electrostatic actuation
is highly energy efficient. Electrostatic actuators primarily
involve coupling between mechanical and electrical domains.
The energy-landscape is a convenient method to analyze
phenomena like static pull-in, dynamic pull-in, and stability of
electrostatic MEMS [4]–[8]. In most textbooks on electrostatic
MEMS actuators [9]–[14], the working of the system is
described in terms of displacement of the movable part. Phase
plane analysis [14], [15] also uses displacement to describe
the dynamics and stability of the actuator. In this article,
we present the analysis of electrostatic MEMS actuators with
charge as the parameter to describe their statics and dynamics.
Using the energy-charge landscape, we derive expressions for
voltage and charge under static pull-in, dynamic pull-in, and
pull-out conditions.
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Why is analysis based on energy-charge landscape relevant?
To address this question, we look at some examples where
the actuator analysis involves charge. Electrostatic actuation
driven by voltage suffers from pull-in instabilities, wherein
the mechanical restoring force cannot balance the electrostatic
force beyond a certain limit. For example, a typical MEMS
cantilever experiences static pull-in at one-third [14] of the air-
gap. Various techniques and control strategies are employed to
modify the pull-in regime in electrostatic MEMS actuators—
for instance, the pull-in instability in electrostatic MEMS
devices can be avoided by connecting a feedback capacitor
in series [16], [17] with the MEMS devices. A metal-oxide-
semiconductor (MOS) capacitor operating in depletion mode,
[16] connected in series, can also stabilize electrostatically
actuated devices. The pull-in limit can also be improved using
a memristor [18] as a feedback sensing element. Negative
capacitance using a ferroelectric capacitor connected in series
[19], [20] can modulate the pull-in regime as well. In all the
aforementioned examples, the working of the system can con-
veniently be investigated using charge. Thus, it is relevant to
analyze electrostatic MEMS based on the energy-charge land-
scape. Masuduzzaman and Alam [19] use an energy-charge
based approach to analyze the static response of the ferroelec-
tric negative capacitance-electrostatic MEMS hybrid actuator.
However, the energy profile of the MEMS actuator used
therein is valid only at points of static equilibrium. Hence, this
cannot be used to understand the dynamics of MEMS actuators
(we discuss this in more detail in Section III). Our goal is
to showcase an energy-charge based approach to investigate
electrostatic MEMS that addresses both statics and dynamics.
We achieve this by employing a coordinate transformation
from displacement to charge, in the Hamiltonian formalism.
In the presence of damping, the proposed method also allows
us to estimate parameters such as air-gap and spring constant.
Given the importance of charge in MEMS applications, this
method will contribute to its analysis and design.

This article is organized as follows. Section II reviews
the statics and dynamics of an electrostatic MEMS actuator.
Section III presents the Hamiltonian formalism based on
coordinate transformation. Section IV describes the analysis
of the MEMS actuator based on the energy-charge land-
scape. Section V presents the impact of damping. Section VI
addresses the scope and limitations of the proposed method.
Section VII presents a case study, showcasing the use of
the energy-charge landscape in the analysis of a feed-
back capacitor-MEMS actuator system. Finally, Section VIII
presents our conclusions.
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Fig. 1. (a) Schematic of an electrostatic MEMS cantilever-type actuator.
(b) Equivalent 1-DOF model with parameters: mass m, spring constant
k, damping coefficient c, air-gap go, and displacement x.

II. REVIEW OF STATICS AND DYNAMICS OF AN

ELECTROSTATIC MEMS ACTUATOR

In this section, the electromechanical response of an elec-
trostatic MEMS cantilever-type actuator excited by a voltage
source is analyzed. We use a one degree-of-freedom (1-DOF)
model, as depicted in Fig. 1, to represent the electrostatic
MEMS actuator. This is a lumped parameter model that
approximates the MEMS actuator as a variable parallel plate
capacitor, consisting of a fixed bottom electrode and a movable
top electrode separated by an air-gap go. The inertia, energy
dissipation, and stiffness of the device are modeled using
a mass m, a viscous damper with damping coefficient c,
and a spring of spring constant k, respectively. This lumped
parameter model is a simplified representation [9], [13], [14],
[21] that can be used to analyze the statics and dynamics
of the system. Modal analysis indicates that the effective
mass is less than the actual mass of the electrode [3], [14].
However, we assume that the effective mass is equal to the
actual mass of the movable electrode [7], [22]. Note that
this does not change the essence of the analysis presented
here. The excitation is denoted by an input voltage VM(t),
where t denotes time. The displacement of the top electrode,
denoted by the dynamical variable x , is limited by means of
a pair of stoppers of height hs . The stoppers are made of
insulating material and prevent shorting the top and bottom
electrodes [23]–[25]. These stoppers minimize the area of
contact when the top electrode snaps down on to the bottom
electrode and thus reduce the effect of surface forces. Keeping
this in mind, we neglect the effect of surface forces in our
analysis. For ease of analysis, damping coefficient c is set
to zero; we consider the case of non-zero damping later in
Section V. The parameters of the electrostatic MEMS actuator
used in this work are listed in Table I. The dimensions listed
are fairly typical for MEMS cantilevers [26]–[28].

The typical static and dynamic characteristics of an electro-
static MEMS actuator, without damping [20], are illustrated
in Fig. 2. The static response, obtained by the application of
a slowly varying input, shows a static pull-in voltage VSPI,
beyond which the top electrode snaps down, resulting in
static pull-in. The maximum distance in the air-gap up to
which the actuator can attain stable equilibrium is called the
travel range XSPI [14]. The dynamic response of the actuator
is characterized by applying a step-input of amplitude VM .
The response of the actuator, in the absence of damping,

TABLE I
PARAMETERS OF THE MEMS ACTUATOR USED IN THIS WORK

Fig. 2. (a) Typical static characteristics depicting pull-in and pull-out.
(b) Typical dynamic characteristics depicting pull-in and pull-out (without
damping). Applied step-input and corresponding actuator response.
(i) Before dynamic pull-in (solid line); After dynamic pull-in and without
pull-out (dashed line). (ii) After dynamic pull-in and with pull-out.

TABLE II
PULL-IN AND PULL-OUT OF AN ELECTROSTATIC MEMS ACTUATOR.

VALUES CORRESPOND TO PARAMETERS LISTED IN TABLE I

is oscillatory, for VM less than the dynamic pull-in voltage
VDPI. The maximum value of this oscillatory displacement
is called dynamic pull-in displacement XDPI [14]. For any
VM > VDPI, the top electrode snaps down, resulting in
dynamic pull-in. After achieving pull-in (static or dynamic),
the top electrode gets detached from the bottom electrode
when the input is less than or equal to the pull-out voltage VPO,
thereby resulting in pull-out [14]. After pull-out, the response
of the actuator (in the absence of damping) is oscillatory,
as shown in Fig. 2(b-ii). The expressions for the voltage and
displacement, and their corresponding values for the designed
MEMS actuator are summarized in Table II.
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Fig. 3. (a) Total energy (HM) plotted as a function of charge (q) and current (q̇) for an input voltage VM = 18 V. Projection on the plane q̇ = 0
gives the potential energy-charge plot. Projection on the plane HM = constant gives the phase plane plot, as shown in Fig. 4(d). (b) Potential energy
(UM) - charge (q) plot for different input voltages. The stable and unstable equilibrium charges coincide at the static pull-in charge QSPI, where input
voltage VM equals static pull-in voltage VSPI. (c) Equilibrium charge (q∗) - input voltage (VM) plot. The stable (unstable) equilibrium charges lie on
the plot where the slope is positive (negative). No equilibrium charges exist for VM > VSPI, resulting in static pull-in.

III. HAMILTONIAN FORMALISM USING COORDINATE

TRANSFORMATION

The Hamiltonian (total energy) HM of the 1-DOF electro-
static MEMS actuator, driven by a voltage source, neglecting
damping, is given by [5], [6]

HM(x, ẋ, t) = 1

2
mẋ2 + 1

2
kx2 − 1

2

�o AM V 2
M(t)

(go − x)
. (1)

The first term represents the kinetic energy with ẋ = (dx/dt)
denoting the velocity. The second and third terms represent
the potential energy stored in the spring and in the capacitor
formed by the top and bottom electrodes, respectively. The
negative sign in the third term is due to the energy lost by the
voltage source in charging the parallel plate capacitor. Now,
we employ a coordinate transformation from displacement to
charge. Since the electrostatic MEMS actuator resembles a
parallel-plate capacitor, the charge q on the electrode can be
related to the displacement x of the electrode as

q = �o AM VM(t)

(go − x)
. (2)

Therefore, HM is obtained as a function of charge q as

HM(q, q̇, t) = 1

2
m

(
�o AM VM(t)

q2

)2

q̇2 + UM(q, t) (3)

where q̇ = (dq/dt) is the current. The first term represents the
kinetic energy. The second term denotes the potential energy of
the spring and the parallel plate variable capacitor, expressed
in the charge coordinate as

UM(q, t) = 1

2
k

(
go − �o AM VM(t)

q

)2

− qVM(t)

2
. (4)

Note that (3) describes the energy of the electrostatic MEMS
actuator for any form of voltage actuation VM(t). We would
like to reiterate that the expression for energy derived in [19]
is valid only at points of static equilibrium, because the
mapping from displacement to charge used therein is obtained
by equating the electrostatic force of attraction between the
two electrodes and the mechanical spring restoring force,
which is valid only at points of static equilibrium. On the
other hand, the mapping (2), used to obtain (3), describes the
charge-voltage relationship of a parallel plate capacitor, and is
valid for any voltage VM(t).

IV. ANALYSIS OF ELECTROSTATIC MEMS ACTUATOR

BASED ON ENERGY-CHARGE LANDSCAPE

A. Static Pull-In

At any given time t , let the amplitude of the input voltage
be VM . The total energy (HM) as a function of charge (q)
and current (q̇) for an input voltage VM = 18 V is plotted in
Fig. 3(a). To find the static equilibria of the system, the time
derivatives should be set to zero. Thus, the total energy
HM reduces to the potential energy UM . In Fig. 3(a), this
corresponds to the projection of the total energy on the plane
where q̇ = 0. By doing so, we obtain the potential energy
(UM ) - charge (q) landscape for the applied voltage as shown
in Fig. 3(b). The static equilibria correspond to dUM/dq = 0.
For each applied voltage, there are two equilibrium charges:
stable (local minima with d2UM/dq2 > 0) and unstable
(local maxima with d2UM/dq2 < 0). The stable and unstable
equilibrium charges are denoted by the cross (×) and circle (◦)
markers, respectively. For an input voltage VM , the displace-
ment of the top electrode settles at a position corresponding
to the energetically favorable stable equilibrium charge. With
increase in VM , the stable and unstable equilibrium charges
become more closely spaced in the energy-charge landscape,
eventually coinciding with each other. Beyond the static
pull-in voltage VSPI, there exists no stable equilibrium charge.
We define the charge corresponding to this voltage as the static
pull-in charge QSPI, as shown in Fig. 3(b). Thus, beyond VSPI,
the top electrode snaps down onto the bottom electrode.

The slope of the potential energy with respect to charge is

dUM

dq
= k(�o AM)2VM

[
f (q) − VM

q3

]
(5)

with

f (q) =
[

go

�o AM

]
q −

[
1

2k(�o AM)2

]
q3. (6)

At static equilibrium, dUM/dq = 0. Thus, we obtain the input
voltage VM as a function of the equilibrium charge q∗ as

VM =
[

go

�o AM

]
q∗ −

[
1

2k(�o AM)2

]
q3

∗ ≡ f (q∗) (7)

as shown in Fig. 3(c). To investigate the stability of the
equilibrium charge q∗, we obtain

d2UM

dq2

∣∣∣∣q=q∗ = k(�o AM)2VM

q3∗
f �(q∗) (8)
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Fig. 4. (a) Illustration of dynamic pull-in using potential energy (UM) - charge (q) plot. Dynamic pull-in does not occur when initial energy is less
than the energy at unstable equilibrium (VM < VDPI). When step-input amplitude VM = VDPI, initial energy equals the energy at unstable equilibrium.
Dynamic pull-in occurs for VM > VDPI. Plots for the designed MEMS actuator when (b) VM = 18.67 V ≡ VDPI and (c) VM = 18.68 V, depicting
dynamic pull-in. (d) Phase portrait for three different step inputs. For VM < VDPI, the closed trajectory implies oscillatory response of the actuator.
The voltage corresponding to the separatrix is VDPI. The separatrix goes through a saddle point which corresponds to QDPI. Any step-input with
VM > VDPI results in an open trajectory, hence leading to dynamic pull-in.

where f �(q∗) = (d f (q)/dq)|q=q∗ , is the reciprocal of the slope
of the plot in Fig. 3(c). Thus, from (8), we conclude that
the equilibrium charge q∗ is stable (unstable) when f �(q∗)
is positive (negative). The stable and unstable equilibrium
charges coincide at q∗ = QSPI when VM = VSPI.

Using (7) and imposing d2UM/dq2 = 0 at pull-in, since
pull-in represents an inflection point, we obtain

VSPI =
√

8kg3
o

27�o AM
; QSPI =

√
2�okgo AM

3
. (9)

B. Dynamic Pull-In

For dynamic pull-in, the transient effects due to the applied
step-input of amplitude VM should be considered. The initial
conditions x(0+) = 0 and ẋ(0+) = 0 are translated to the
charge coordinate as q(0+) = qinit = (�0 AM VM)/go and
q̇(0+) = 0, respectively, using (2). Note that the electrostatic
MEMS actuator gets charged to qinit instantaneously at t = 0.
This is similar to the case of charging a capacitor in a circuit
without any resistance (see [31]). As q̇(0+) = 0, the total
energy reduces to the potential energy and therefore, the initial
energy is calculated from (4) with q = qinit. Fig. 4(a) explains
the concept of dynamic pull-in using the potential energy (UM)
- charge (q) profile. When a step-input of amplitude V1 is
applied at t = 0, the initial energy obtained is denoted as E1.
The charge on the actuator causes a non-zero acceleration at
t = 0. As a result, the top electrode starts moving, converting
potential energy into kinetic energy. However, the displace-
ment of the top electrode is limited by the potential energy
bound in the potential energy-charge landscape, as shown in
Fig. 4(a). This results in an oscillatory response of the actuator
in the charge coordinate, similar to the oscillatory response
in the displacement coordinate depicted in Fig. 2(b-i). The
oscillations are now between the initial charge qinit1 and the
corresponding charge qbound as depicted in Fig. 4(a). When
the amplitude of the step-input is increased to V2, the initial
energy E2 equals the energy at the unstable equilibrium and
this input corresponds to the dynamic pull-in voltage VDPI.
We define the unstable equilibrium charge corresponding to
VDPI as the dynamic pull-in charge QDPI. Any further increase
in amplitude of the step voltage will result in the initial energy
being greater than the energy at the unstable equilibrium.
Hence, this will result in dynamic pull-in as depicted for a

step-input of amplitude V3, in Fig. 4(a). Thus, VDPI and QDPI

are derived using the condition that, at dynamic pull-in voltage,
the initial energy is equal to the energy at dynamic pull-in
charge; that is, when VM = VDPI, we have UM (q = qinit) =
UM(q = QDPI). Using this and the fact that QDPI is also an
equilibrium charge with dUM/dq = 0 at QDPI, we obtain

VDPI =
√

kg3
o

4�o AM
; QDPI = √

�okgo AM . (10)

Dynamic pull-in can also be visualized using the phase por-
trait. The phase plane is obtained from the 3-D plot shown
in Fig. 3(a), by taking the projection on the plane where total
energy is constant. This constant is fixed by the initial energy.
Each trajectory in the phase plane shows the evolution of a set
of initial conditions (q and q̇), with time, for an applied step
input. The collection of such trajectories for different applied
voltages is called the phase portrait as shown in Fig. 4(d).
It is noted that the values of the initial charge qinit for the
three voltages are numerically very close and hence, appear
to be the same charge in the phase portrait. For an applied
step-input of amplitude 18.6 V, the closed trajectory in the
phase portrait implies oscillatory response of the actuator.
The dynamic pull-in voltage (VDPI = 18.67 V) manifests in the
form of a separatrix that separates the behavior before pull-in
and after pull-in. The separatrix goes through a saddle point
which corresponds to QDPI. Any step-input with amplitude
greater than VDPI (VM = 18.68 V) will result in dynamic pull-
in, as depicted by the open trajectory in the phase portrait.

C. Pull-Out

After achieving pull-in (static or dynamic), the top electrode
has moved a distance of xPO = go − hs . In the charge
coordinate, using (2), this corresponds to a charge qfinal =
�o AM VM/hs . The pull-out phenomenon can be understood
using the potential energy (UM ) - charge (q) plot as illus-
trated in Fig. 5(a). The top electrode remains attached to the
bottom electrode as long as there exists an energy barrier
(dUM/dq < 0) at charge qfinal1 for an applied voltage V1.
At the pull-out voltage VPO, the energy barrier disappears
(dUM/dq = 0). That is, for V2 = VPO, we have qfinal2 =
QPO = �o AM VPO/hs . Any applied voltage less than VPO also
results in pull-out (dUM/dq > 0 at qfinal3), as illustrated
in Fig. 5(a). Since the slope of the potential energy-charge
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Fig. 5. (a) Illustration of pull-out phenomenon using potential energy (UM) - charge (q) plot. For input voltage V1 > VPO, the presence of energy
barrier at qfinal1 prevents pull-out. For input voltage V2 = VPO, the energy barrier just disappears at qfinal2 = QPO, resulting in pull-out. For input
voltage V3 < VPO, the absence of energy barrier at qfinal3 results in pull-out. Phase portrait for step-input with amplitude (b) 18.01 and (c) 18 V.
Release of the top electrode is not achieved when the step-input is reduced to 18.01 V as qfinal1 lies on the open trajectory. When the input is reduced
to VPO = 18 V, the corresponding charge QPO lies on the closed trajectory and hence the top electrode gets released.

Fig. 6. Plots for step input actuation with VM = 18.6 V and ζ = 0.1. (a) and (b) Transient response of the charge and current. (c) Phase portrait
depicting the decaying oscillations of the charge and current. (d) Potential energy - charge plot, along with the time evolution of the total energy.
Damping coefficient c is estimated based on the approximation in [32]. The estimated value of c is 3.5×10−7 Ns/m (exact value of c is 2.8×10−7 Ns/m).

profile is zero at QPO for applied voltage VM = VPO, from (5),
setting (dUM/dq) = 0 with q = QPO, we derive

VPO =
√

2kh2
s (go − hs)

�o AM
. (11)

Pull-out can also be visualized using the phase portrait as
shown in Fig. 5(b) and (c). Release of the top electrode is not
achieved when the step-input is reduced to 18.01 V as qfinal1

lies on the open trajectory. When the input is further reduced
to VPO = 18 V, the corresponding charge qfinal(VM = VPO) =
QPO lies on the closed trajectory and hence the top electrode
gets released. The closed trajectory illustrates the sustained
oscillatory response of the top electrode, after release, in the
absence of damping.

Note that the voltage expressions derived above for
static pull-in, dynamic pull-in, and pull-out using the
energy-charge landscape are identical with those derived from
the energy-displacement landscape (see Table II). Whether
the input voltage is varied slowly as in the case of static
input, or the input voltage is varied suddenly as in the case
of dynamic input, the pull-out voltage is the same. This is
because the actuator remains at x = go − hs until the input
voltage VM is reduced to VPO, be it slowly or suddenly,
leading to disappearance of the energy barrier. Thus it is the
disappearance of the energy barrier that decides the pull-out
rather than the manner by which the input voltage is varied.
Contrast this with the situation during pull-in: the electrostatic
MEMS actuator can pull-in either if the system does not see a
barrier or the system has sufficient energy to surmount the
barrier. The former case happens for slowly varying input

TABLE III
PULL-IN AND PULL-OUT OF AN ELECTROSTATIC MEMS
ACTUATOR BASED ON ENERGY-CHARGE LANDSCAPE

VM (static pull-in) or step excitation (dynamic pull-in) with
VM > VSPI. The latter case happens only for step excitation
with VM > VDPI and VM < VSPI (that is, VDPI < VM < VSPI).
Hence, it is the nature of the energy landscape that brings
out the above described contrast between pull-in and pull-out.
The expressions for the voltage and charge, derived using the
proposed framework, are summarized in Table III.

V. IMPACT OF DAMPING

We have neglected damping in our analysis so far. We now
examine the impact of damping by including the damping
coefficient c in the 1-DOF model in Fig. 1. Here, c represents
an effective value accounting for various damping mechanisms
in MEMS [14]. We calculate the damping coefficient as
c =2mωoζ , where ωo = √

k/m is the natural frequency
and ζ is the damping ratio of the mechanical cantilever
structure [14]. The dynamic pull-in voltage is influenced
by damping [27]. With increase in damping, the dynamic
pull-in voltage approaches VSPI. The dynamic response, before
pull-in, decays with time, and the actuator settles at the
static equilibrium displacement corresponding to the magni-
tude of the applied step input. The transient response in the
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Fig. 7. (a) Schematic of the feedback capacitor-MEMS actuator, as proposed in [16]. (b) Equivalent circuit representation: Cλ represents the series
feedback capacitance and CM denotes the variable capacitance of the MEMS actuator. (c) Potential energy (Uλ) - charge (q) plot for different input
voltages. The static pull-in charge and static pull-in voltage are QSPIλ and VSPIλ, respectively. (d) Equilibrium charge-voltage characteristics. Though
the equilibrium charge (q∗) - VM plot has a region with negative slope, the actuator is stabilized in this region by the feedback capacitor. Therefore,
the static pull-in charge (voltage) is increased from QSPI (VSPI) in the standalone MEMS actuator, to QSPIλ (VSPIλ) in the feedback capacitor-MEMS
actuator. Increase in the static pull-in charge results in the extension of the travel range.

charge coordinate also shows a similar behavior. For example,
Fig. 6(a) and (b) shows the transient charge q(t) and current
q̇(t) plotted for ζ = 0.1 and VM = 18.6 V. These plots have
been obtained by numerically solving the MEMS dynamics
in the charge coordinate. The corresponding phase portrait
is plotted in Fig. 6(c), where the trajectory is an inward
spiral [unlike the closed trajectory for the undamped case in
Fig. 4(d)]. Using (3) and (4), we also plot the total energy
and the potential energy, as a function of charge, as shown in
Fig. 6(d). The total energy of the system evolves with time,
as depicted by its trajectory and finally, the system settles at
the static equilibrium charge.

Electrical measurement techniques for estimation of various
MEMS parameters are common and are widely reported in
literature [33]–[37]. We now propose a procedure to estimate
various parameters using the energy-charge landscape, based
on electrical measurements. For instance, an electrical mea-
surement set-up (such as, in [33]) could be used to measure
the transient current q̇(t), for a step-input excitation with VM

less than the pull-in voltage. The transient charge q(t) can
then be obtained by integrating q̇(t). With the help of the
transient response and energy plots, we can estimate parame-
ters such as displacement, velocity, air-gap, spring constant,
and damping coefficient. Velocity is estimated as ẋ(t) =
�o AM VM(t)q̇(t)/q2(t). Displacement x(t) can be obtained by
integrating ẋ(t). It is noted that the final steady state value of
the charge in the transient response in Fig. 6(a), corresponds
to the stable equilibrium charge of the static response. This
allows us to estimate air-gap go and spring constant k from
the equilibrium charge-voltage relationship, given by (7). Let
the stable equilibrium (steady state) charges be denoted as Qa

and Qb for two different step inputs of amplitude Va and Vb,
respectively (Va, Vb less than the dynamic pull-in voltage).
Using (7), we propose the estimation of go and k as

go = AM�o
(
Vb Q3

a − Va Q3
b

)
Qa Qb

(
Q2

a − Q2
b

) ; k = Qa Qb
(
Q2

a − Q2
b

)
2A2

M�2
o(Qa Vb − QbVa)

.

(12)

Any point on the potential energy plot in Fig. 6(d) corresponds
to zero kinetic energy, implying q̇ = 0, according to (3). Thus,
we can obtain the potential energies Ed1 and Ed2 in Fig. 6(d),
corresponding to the two consecutive charges Qd1 and Qd2 on

the phase portrait, where q̇ = 0 [see Fig. 6(c)]. The energy
dissipated during this time interval can be calculated as �Ed =
Ed1 − Ed2. From the estimated x(t) and ẋ(t), the distance
traveled during this time interval, xd , and the average velocity
for traversing this distance, vavg, can also be calculated. Based
on [32], we propose to estimate an approximate value of
the damping coefficient as c ≈ �Ed/(xdvavg). Based on our
simulation, we find this approximation to give a reasonable
estimate of c (within 50% of the actual value) for ζ in the
range 0 to 0.55. Note that the value of mass m is not needed to
determine Ed1 and Ed2. The above-described technique could
be an alternative to the other methods available [38] for the
measurement of these parameters.

VI. SCOPE AND LIMITATIONS

We have used a 1-DOF lumped parameter model that
neglects the transverse deflection of the cantilever along its
length [14], [21]. We have also neglected the effect of the
fringing field capacitance in our analysis. The effect of the
fringing field capacitance can be captured by a modified
MEMS capacitance expression available in [8]. We have
ignored the effect of surface forces during collision between
the top electrode and the stopper. The methodology presented,
however, can be extended to include the surface forces as well,
since these surface forces manifest as additional terms in the
Hamiltonian [39]. Additionally, a new mapping function has
to be formulated for other geometries and systems. As long
as the MEMS structure is capacitive, the proposed framework
can be used, with the new mapping function describing the
charging equation of the MEMS capacitance. An example for
this is provided in the case study presented in the next section.

VII. CASE STUDY: FEEDBACK CAPACITOR-MEMS
ACTUATOR SYSTEM

We consider the case of a feedback capacitor connected
in series with an electrostatic MEMS actuator, excited by a
voltage source [16], as shown in Fig. 7(a) and (b). Here, CM

denotes the variable capacitance of the MEMS actuator and
Cλ denotes the fixed feedback capacitance. An extension of
the travel range for static input, beyond the conventional travel
range of one-third of the air-gap, is proposed in [16], using the
energy-displacement landscape. An experimental validation of
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this extension of the travel range using the capacitive feedback
is presented in [17].

We now analyze this feedback capacitor-MEMS actuator
system using the energy-charge landscape. The variable dis-
placement is defined only for the MEMS actuator (as the
feedback capacitor does not have any movable part). On the
other hand, both the capacitors share the same charge as
they are connected in series. Hence, it is convenient to
use charge for the analysis. This provides an advantage over
the energy-displacement approach as we can now look at the
state of the individual components of the system separately,
with charge being the common variable. Thus, we analyze
the operation of the actuator by plotting the charge-voltage
characteristics for the overall system and also for the indi-
vidual capacitances: MEMS capacitance CM and feedback
capacitance Cλ.

We define λ as the ratio of zero-bias MEMS capacitance
Co = �o AM/go to the feedback capacitance Cλ. Since Cλ

and CM are in series, the equivalent capacitance Ceq =
CλCM/(Cλ + CM ). Substituting CM = �o AM/(go − x) and
Cλ = Co/λ, we obtain Ceq = (�o AM)/(go(λ + 1) − x). This
implies that the effective electrical air-gap of the actuator is
now go(λ + 1). The feedback capacitor-MEMS actuator is
excited by a voltage source Vin. Therefore, we obtain the
potential energy of the system as

Uλ(x, t) = 1

2
kx2 − 1

2

�o AM V 2
in(t)

go(λ + 1) − x
. (13)

The voltage across MEMS actuator VM(t) is related to the
input voltage Vin(t) as

VM(t) = Vin(t)
Cλ

Cλ + CM
= Vin(t)

1 + [λgo/(go − x)]
. (14)

Since Cλ and CM are in series, the charge q remains the
same on both the capacitors. Substituting (14) in our orig-
inal mapping function, given by (2), we obtain the rela-
tion between charge q and displacement x for the feedback
capacitor-MEMS actuator as

q = �o AM Vin(t)

go(λ + 1) − x
; x = go(λ + 1) − �o AM Vin(t)

q
. (15)

Substituting (15) in (13), we obtain the potential energy of the
system as a function of charge q as

Uλ(q, t) = k

2

[
go(λ + 1) − �o AM Vin(t)

q

]2

− q

2
Vin(t). (16)

The values of the MEMS actuator parameters are the same as
in Table I. We choose λ so that the entire distance go − hs

equals the extended static travel range XSPIλ. This ensures
stable operation of the actuator over the full range and thus,
eliminates the static pull-in instability. Therefore, XSPIλ =
go(λ + 1)/3 = go − hs . Substituting the values of go and
hs , we get λ = 0.6. Please note that we could instead choose
λ such that the dynamic pull-in displacement equals the entire
distance go − hs . However, to compare our results with [16],
we only consider the static case here.

Fig. 7(c) shows the potential energy (Uλ) - charge (q) plot
of the feedback capacitor-MEMS actuator, for different input

voltage Vin. As in the case of the standalone MEMS actuator in
Fig. 3(b), the stable and unstable equilibrium charges coincide,
when Vin equals the static pull-in voltage of the feedback
capacitor-MEMS actuator VSPIλ. The corresponding charge
is the static pull-in charge of the feedback capacitor-MEMS
actuator QSPIλ, as shown in Fig. 7(c).

At static equilibrium, (dUλ/dq) = 0. Therefore, we obtain
the equilibrium charge (q∗) - input voltage (Vin) relation for
the feedback capacitor-MEMS actuator as

Vin =
[

go(λ + 1)

�o AM

]
q∗ −

[
1

2k(�o AM)2

]
q3

∗ . (17)

Fig. 7(d) shows the equilibrium charge (q∗) - input voltage
(Vin) plot of the feedback capacitor-MEMS actuator, obtained
using (17). The feedback capacitor-MEMS actuator is stable
in the region with positive slope, as shown, with Vin ≤ VSPIλ.
This is similar to the equilibrium charge-voltage plot of the
standalone MEMS actuator in Fig. 3(c). However, note that the
static pull-in charge and static pull-in voltage in the feedback
capacitor-MEMS actuator are larger than their corresponding
counterparts in the standalone MEMS actuator. This increase
in the static pull-in charge results in an extension of the travel
range. Substituting Vin = VSPIλ and q = QSPIλ in (15), we con-
firm that the travel range of the feedback capacitor-MEMS
actuator XSPIλ = 1.6 μm ≡ go − hs , thereby eliminating the
static pull-in instability (travel range of the standalone MEMS
actuator XSPI is 1 μm).

The energy-charge landscape approach enables us to plot
the equilibrium charge-voltage characteristics of the individual
capacitances: CM and Cλ, separately. For an applied input
voltage Vin and the corresponding stable equilibrium charge,
the voltage across MEMS capacitor VM is obtained using (14)
and (15). Also, the voltage across the feedback capacitor
Vλ is obtained as Vin − VM . Thus, in Fig. 7(d), we also
show the equilibrium charge (q∗) - Vλ plot of the feedback
capacitance Cλ and equilibrium charge (q∗) - VM plot of
the MEMS capacitance CM . It is noted that the stability of
the overall system is determined by the slope of the q∗-
Vin plot (stable when slope is positive). The q∗-Vλ plot is
a straight line as Cλ is a fixed capacitor. The q∗-VM plot
includes a region with negative slope where the actuator is
stable. The stability of the actuator in this region is due to
the capacitive feedback provided by Cλ. This is unlike the
case in the standalone MEMS actuator, where the actuator is
unstable in the region with negative slope in its q∗-VM plot
[see Fig. 3(c)]. Thus, the improvement in the stability and
the extension of the travel range are conveniently explained
by the equilibrium charge-voltage plots, derived from the
energy-charge landscape.

VIII. CONCLUSION

We have presented a unified framework to analyze the
statics and dynamics of an electrostatic MEMS actuator from
its energy-charge landscape. The proposed method employs
coordinate transformation from the conventional displacement
coordinate to the charge coordinate. This coordinate transfor-
mation is used in the Hamiltonian formalism to obtain the
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energy-charge relationship. The expressions for the voltage
and charge, derived using the proposed framework, are sum-
marized in Table III. The voltage expressions derived using
energy-charge relationship (Table III) are identical with those
derived using the conventional energy-displacement relation-
ship (Table II). The impact of damping is also examined using
the energy-charge method. The proposed framework will aid
in the design and analysis of electrostatic MEMS devices.
A case study, considering a feedback capacitor-MEMS actua-
tor system, is also presented, to illustrate the convenience of
using the proposed energy-charge landscape in the design and
analysis.
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