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ABSTRACT
In this article, we consider the condition pseudospectrum of
bounded linear operators on a Banach space. The condition pseu-
dospectrum of normal matrices and Jordan blocks are characterized
and condition pseudospectral radius of the classes are found. Sub-
additivity and sub-multiplicativity of the condition pseudospectral
radius for commutingpairs of bounded linear operators areproved. It
is shown that the condition pseudospectral radius becomes a com-
plete algebra norm in a commutative complex unital Banach alge-
bra. Certain examples are given to illustrate the results. The results
developed are also extended to a general setting.
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1. Introduction

Throughout this article, X denotes a complex Banach space and BL(X) is the Banach alge-
bra of all bounded linear operators on X. The condition pseudospectrum of an operator
A ∈ BL(X) is a generalization of the spectrum of A.

Definition 1.1: Let A ∈ BL(X) and 0 < ε < 1. The ε-condition pseudospectrum of A is
denoted by σε(A) and is defined as

σε(A) := σ(A) ∪ {z ∈ C : ‖zI − A‖‖(zI − A)−1‖ ≥ ε−1} .
Here σ(A) is the spectrum ofA and I is the identity operator in BL(X). Condition pseu-

dospectrumwas introduced in the article [1]. In the same article, this generalized spectrum
is named as the condition spectrum. Several properties of the spectrum are generalized to
the condition pseudospectrum and compared to several other generalizations of spectrum,
condition pseudospectrum is proved to be algebraically close to spectrum. Hence condi-
tion pseudospectrum is useful to study perturbation analysis of operators in BL(X). Let
A ∈ BL(X) and z, x, b ∈ X. For 0 < ε < 1; z /∈ σε(A) guarantees a stable solution to the
linear system Ax−zx = b. Thus, the condition pseudospectrum becomes a useful tool in
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2 G. KRISHNA KUMAR AND S. H. KULKARNI

the numerical solution of the system of linear equations and the numerical solution of dif-
ferential equations. The condition pseudospectrum may also be used to study the norm
behaviour of functions of operators in BL(X). For more details and results on condition
pseudospectrum, one may refer to [1–5].

Definition 1.2: Let A ∈ BL(X) and 0 < ε < 1. The ε-condition pseudospectral radius of
A is denoted by rε(A) and is defined as

rε(A) := sup{|z| : z ∈ σε(A)}.

The following properties of the condition pseudospectral radius are proved in [1].

Remark 1.3: Let A ∈ BL(X) and 0 < ε < 1. Then

(1) r(A) ≤ rε(A).
(2) A = αI if and only if σε(A) = {α}.
(3) rε(A) ≤ (1 + ε)/(1 − ε)‖A‖.

The sub-additivity and sub-multiplicativity of the spectral radius and the pseudospec-
tral radius are proved and are available in [6,7]. The purpose of the article is to prove the
sub-additivity and sub-multiplicativity of the condition pseudospectral radius for a com-
muting pair of operators in BL(X). The pseudospectrum is also a generalization of the
spectrum and is used to study the norm behaviour of non-normal operators in BL(X).

Definition 1.4: Let A ∈ BL(X) and ε > 0. The ε-pseudospectrum of A is denoted by
�ε(A) and is defined as

�ε(A) := σ(A) ∪ {z ∈ C : ‖(zI − A)−1‖ ≥ ε−1} .
Proposition 1.5: Let A ∈ BL(X) and ε > 0. Further let r(A) and ρε(A) denote the spectral
radius and pseudospectral radius of A, respectively. Then

(1) There exist an A �= 0 such that r(A) = 0.
(2) If A = 0 then ρε(A) = ε.
(3) rε(A) = 0 ⇔ A = 0.

Proof: (1) Consider X = C2 and A = [ 0 1
0 0
]
.

(2) See [8].
(3) Follows from (2) of Remark 1.3. �

From (1) of Proposition 1.5, it follows that the spectral radius is not an algebra norm
in BL(X). From (2) of Proposition 1.5, we see that the pseudospectral radius also fails to
become an algebra norm in BL(X). The following is an outline of the article.

In section 2, the condition pseudospectrum of normal matrices and Jordan blocks are
characterized. In Section 3, the sub-additivity and sub-multiplicativity of the condition
pseudospectral radius for commuting pairs of operators of BL(X) are proved. Certain
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examples are also given to illustrate the results. In Section 4, we prove that the condi-
tion pseudospectral radius and the operator norm on BL(X) are equivalents. Hence, the
condition spectral radius becomes a complete norm in a commutative complex unital
Banach algebra. In Section 5, the results proved in the previous sections are extended to
non-commutative pairs of operators in BL(X) and almost commutative pairs of matrices.

2. Condition pseudospectrum of normal matrices and Jordan blocks

In this section, we characterize the condition pseudospectrum and condition pseudospec-
tral radius of normal matrices and Jordan blocks. For the normal matrix, we take ‖ · ‖2 and
for the Jordan block we take ‖ · ‖1 or ‖ · ‖∞. For z0 ∈ C and r>0 define

D(z0, r) := {z ∈ C : |z − z0| ≤ r}.

Theorem2.1: Let A ∈ CN×N be a normalmatrix with distinct eigenvalues {λ1, . . . , λk} and
0 < ε < 1. Then

σε(A) =
k⋃

p,q=1
D

(
λp − ε2λq

1 − ε2
,
ε |λp − λq|
1 − ε2

)
.

Proof: We haveA = QDQ∗ for someQ unitary andD diagonal with entries as eigenvalues
of A. Since Q is unitary ‖zI − A‖‖(zI − A)−1‖ = ‖zI − D‖‖(zI − D)−1‖. We also have

‖zI − D‖ = max
λp∈σ(A)

|z − λp| and ‖(zI − D)−1‖ = 1
min

λq∈σ(A)
|z − λq| .

Thus for 0 < ε < 1

σε(A) =

⎧⎪⎨
⎪⎩z ∈ C :

max
λp∈σ(A)

|z − λp|

min
λq∈σ(A)

|z − λq| ≥ 1
ε

⎫⎪⎬
⎪⎭

=
⋃

λp,λq∈σ(A)

{
z ∈ C :

|z − λp|
|z − λq| ≥ 1

ε

}

=
⋃

λp,λq∈σ(A)

{
z ∈ C : |z − λp| ≤ ε|z − λq|

}
.

Denote z = x + iy, λp = rp + i sp where rp, sp ∈ R. Then |z − λp| ≤ ε|z − λq| becomes(
x − rp − ε2rq

1 − ε2

)2

+
(
y − sp − ε2sq

1 − ε2

)2

≤ ε2[(rp − rq)2 + (sp − sq)2]
(1 − ε2)2

and σε(A) becomes the union of disks with centres

(
rp − ε2rq
1 − ε2

,
sp − ε2sq
1 − ε2

)
= λp − ε2λq

1 − ε2

and the corresponding radii
ε

√
(rp − rq)2 + (sp − sq)2

1 − ε2
= ε |λp − λq|

1 − ε2
. �
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Remark 2.2: LetA ∈ CN×N be a normalmatrix with distinct eigenvalues {λ1, . . . , λk} and
0 < ε < 1. Then

rε(A) = 1
1 − ε2

max{|λp − ε2λq| + ε|λp − λq| : λp, λq ∈ σ(A)}.

Example 2.3: Consider the 3 × 3 Hilbert matrix A =
[

1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

]
. We have σ(A) =

{0.003, 0.122, 1.408}. Denote λ1 = 0.003, λ2 = 0.122, λ3 = 1.408. Then for ε = 0.25 we
have

|λ1 − ε2λ2| = 0.008 ε|λ1 − λ2| = 0.298 |λ1 − ε2λ2| + ε|λ1 − λ2| = 0.306
|λ1 − ε2λ3| = 0.085 ε|λ1 − λ3| = 0.351 |λ1 − ε2λ3| + ε|λ1 − λ3| = 0.436
|λ2 − ε2λ1| = 0.122 ε|λ2 − λ1| = 0.298 |λ2 − ε2λ1| + ε|λ2 − λ1| = 0.420
|λ2 − ε2λ3| = 0.034 ε|λ2 − λ3| = 0.322 |λ2 − ε2λ3| + ε|λ2 − λ3| = 0.356
|λ3 − ε2λ1| = 1.408 ε|λ3 − λ1| = 0.351 |λ3 − ε2λ1| + ε|λ3 − λ1| = 1.759
|λ3 − ε2λ2| = 1.400 ε|λ3 − λ2| = 0.322 |λ3 − ε2λ2| + ε|λ3 − λ2| = 1.722

Thus σ0.25(A) is the union of the disksD(0.009, 0.318),D(0.091, 0.374),D(0.130, 0.318),
D(0.036, 0.343), D(1.502, 0.374) and D(1.493, 0.343). We also have r0.25(A) = 1.876.

Theorem 2.4: Let A =
[

λ 1 0 ··· 0
0 λ 1 ··· 0· · · ··· ·· · · ··· λ

]
be an N × N Jordan block, ‖ · ‖ = ‖ · ‖1 or ‖ · ‖∞

and 0 < ε < 1. Thenσε(A) = λ + σε(A0)whereA0 =
[ 0 1 0 ··· 0
0 0 1 ··· 0· · · ··· ·· · · ··· 0

]
andσε(A0) = {z ∈ C :

|z|N
(1 + |z|)(1 + |z| + · · · + |z|N−1)

≤ ε}.

Proof: We have A = λI + A0 and σε(A) = λ + σε(A0) [1]. For z ∈ C

‖zI − A0‖ = 1 + |z|and‖(zI − A0)
−1‖ = 1 + |z| + · · · + |z|N−1

|z|N .

Then

σε(A0) =
{
z ∈ C :

(1 + |z|)(1 + |z| + · · · + |z|N−1)

|z|N ≥ ε−1
}

and σε(A) = λ + σε(A0). �

Proposition 2.5: Let A0 be the Jordan block defined in Theorem 2.4. Then

(1) rε(A0) = 1 if and only if ε = 1
2N

.

(2) rε(A0) < 1 if and only if (1 − ε)rε(A0)
N − 2ε rε(A0)[1 − rε(A0)

N]
1 − rε(A0)

= ε.

(3) rε(A0) > 1 if and only if (1 − ε)rε(A0)
N − 2ε rε(A0)[rε(A0)

N − 1]
rε(A0) − 1

= ε.

(4) σε(A) = D(λ, rε(A0)).
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Proof: Let 0 < ε < 1 and |z| = rε(A0) then
(1 + |z|)(1 + |z| + · · · + |z|N−1)

|z|N = 1
ε
and

(1), (2) and (3) follows. Define πε(A) := {z ∈ σε(A) : |z| = rε(A)}. From Theorem 2.4, if
z ∈ σε(A) then |z|eiθ ∈ σε(A) for every −π < θ ≤ π . It is also true that if |z| = rε(A0)

then πε(A0) = |z|eiθ for every −π < θ ≤ π . Thus σε(A0) = D(0, rε(A0)) and σε(A) =
D(λ, rε(A0)). �

Let A be the 5 × 5 Jordan block. The following table gives rε(A) for various values of λ
and ε using the python programme.

ε rε(A0) λ rε(A) σε(A)

0.01 0.5000 1 + i 1.9142 D(1 + i, 0.5)
0.02 0.6000 2−i 2.8661 D(2 − i, 0.6)
0.025 0.6300 3 + 2i 4.2356 D(3 + 2i, 0.63)
0.3 1.8000 i 2.8000 D(i, 1.8)
0.4 2.2999 −i 3.3999 D(−i, 2.3)
0.45 2.6199 3 − 2i 6.2255 D(3 − 2i, 2.62)
0.5 2.9899 2 + i 5.2260 D(2 + i, 2.99)
0.75 6.9999 1 − i 8.4141 D(1 − i, 7)

3. Sub-additivity and sub-multiplicativity for commuting pairs of operators

Let I := {zI : z ∈ C}. The following lemma and its proof are modifications of Theorem 1
in [6, p.18] and of Lemma 3.1 in [7] and their proofs.

Lemma 3.1: Let 
 be a bounded semi-group of BL(X) under multiplication (or compo-
sition) and I ∈ 
. Then there exists a function p : BL(X) → R+ satisfying the following
conditions.

(1) rε(A) ≤ p(A) for all A ∈ BL(X) and 0 < ε < 1.
(2) p(S) ≤ 1 for all S ∈ 
.
(3) p(A + B) ≤ p(A) + p(B) for all A,B,A + B /∈ I .
(4) p(AB) ≤ p(A) p(B) for all A,B ∈ BL(X).

Proof: For 0 < ε < 1 define q : BL(X) → R+ by

q(A) =
⎧⎨
⎩sup

{
1 + ε

1 − ε
‖SA‖ : S ∈ 


}
A /∈ I ;

|α| A = αI.

The following properties of q can be easily verified:

(a) If A ∈ I , then rε(A) = q(A).
(b) If A ∈ BL(X) � I , then rε(A) ≤ q(A).
(c) q(αA) = |α|q(A) for all A ∈ BL(X) and α ∈ C.
(d) q(A + B) ≤ q(A) + q(B) for all A,B,A + B /∈ I .
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(e) q(AB) ≤ q(A) q(B) for all A,B ∈ BL(X).

Define p : BL(X) → R+ as

p(A) = sup{q(AX) : X ∈ 
, q(X) ≤ 1}.
We claim that p(A) = q(A) for all A ∈ BL(X).

Since I ∈ 
 and q(I) = 1, q(A) ≤ p(A) for all A ∈ BL(X). Also

p(A) ≤ sup{q(A) q(X) : X ∈ 
, q(X) ≤ 1} ≤ q(A).

This proves the claim. Now we are ready to prove the four conditions of p stated. Since
p(A) = q(A) for all A ∈ BL(X),

(1) follows from (a) and (b).
(2) Recall that p(I) = q(I) = 1. For S ∈ 
 � {I},

q(SX) = sup
{
1 + ε

1 − ε
‖S′SX‖ : S′ ∈ 


}

≤ sup
{
1 + ε

1 − ε
‖S1x‖ : S1 ∈ 


}
(since
 is a bounded semi − group)

= q(X).

From the definition of p(S), it follows that

p(S) = sup
q(X)≤1

q(SX) ≤ sup
q(X)≤1

q(X) = 1.

(3) follows from (d).
(4) follows from (e). �

Now we are ready to prove the sub-additivity and sub-multiplicativity of the condition
pseudospectral radius for a commuting pair of operators inBL(X). The following theorems
are suitable modifications of Theorem 3.2 and 3.3 of [7].

Theorem 3.2: Let A,B ∈ BL(X) and AB = BA. Then rε(A + B) ≤ rε(A) + rε(B) for all
0 < ε < 1.

Proof: Let 0 < ε < 1. We consider all the possible forms of A and B.
Case 1: If A,B ∈ I , then A + B ∈ I and

rε(A + B) = r(A + B) ≤ r(A) + r(B) = rε(A) + rε(B).

Case 2: If A ∈ I or B ∈ I . Further assume that A = αI for some α ∈ C. Then, [1],

σε(A + B) = σε(αI + B) = α + σε(B) = σε(A) + σε(B)

and

rε(A + B) = rε(A) + rε(B).
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Case 3: If A,B /∈ I and A + B ∈ I . Then
rε(A + B) = r(A + B) ≤ r(A) + r(B) ≤ rε(A) + rε(B).

Case 4: If A,B,A + B /∈ I . For δ > 0 define

U = A
rε(A) + δ

and V = B
rε(B) + δ

.

Note that both U,V /∈ I , UV = V U, r(U) < 1 and r(V) < 1. Thus the set 
 := {UiVj :
i, j ≥ 0} becomes a bounded semi-group under multiplication [7,9]. From Lemma 3.1,
there exists p : BL(X) → R+ such that

p
(

A
rε(A) + δ

)
= p(A)

rε(A) + δ
≤ 1,

p
(

B
rε(B) + δ

)
= p(B)

rε(B) + δ
≤ 1.

Thus p(A) ≤ rε(A) + δ and p(B) ≤ rε(B) + δ. Together with other properties of p,

rε(A + B) ≤ p(A + B) ≤ p(A) + p(B) ≤ rε(A) + rε(B) + 2δ.

Since δ > 0 is arbitrary, we have rε(A + B) ≤ rε(A) + rε(B). �

Theorem 3.3: Let A,B ∈ BL(X) and AB = BA. Then rε(AB) ≤ rε(A) rε(B) for all
0 < ε < 1.

Proof: Let 0 < ε < 1. We consider all the possible forms of A and B.
Case 1: If A,B ∈ I . Then AB ∈ I and

rε(AB) = r(AB) ≤ r(A) r(B) = rε(A) rε(B).

Case 2: If A ∈ I or B ∈ I . Further assume that A = αI for some α ∈ C. Then, [1],

σε(AB) = σε(αB) = α σε(B) = σε(A) σε(B)

and

rε(AB) = rε(A) rε(B).

Case 3: If A,B /∈ I and AB ∈ I . Then
rε(AB) = r(AB) ≤ r(A) r(B) ≤ rε(A) rε(B).

Case 4: If A,B,AB /∈ I . For δ > 0 define

U = A
rε(A) + δ

and V = B
rε(B) + δ

.

Note that bothU,V /∈ I ,UV = VU, r(U) < 1 and r(V) < 1. Then the set {UiVj : i, j ≥ 0}
is a bounded semi-group under multiplication [7,9]. From Lemma 3.1, there exists
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p : BL(X) → R+ such that

p(U) = p
(

A
rε(A) + δ

)
≤ 1,

p(V) = p
(

B
rε(B) + δ

)
≤ 1.

Thus p(A) ≤ rε(A) + δ and p(B) ≤ rε(B) + δ. Together with the other properties of p,

rε(AB) ≤ p(AB) ≤ p(A) p(B) ≤ (rε(A) + δ)(rε(B) + δ).

Since δ > 0 is arbitrary, we have rε(AB) ≤ rε(A) rε(B). �

In the following, we give a noncommutaive pair of matrices where the sub-additivity
and sub-multiplicativity of the condition pseudospectral radius fail.

Example 3.4: ConsiderBL(C2). Let t>0 andA = [
0 t2
1 0

]
. ThenAA∗ �= A∗A.We also have

σ(A) = σ(A∗) = {t,−t}, σ(AA∗) = {1, t4}, σ(A + A∗) = {1 + t2,−1 − t2}.
Hence

r(A) = r(A∗) = t, r(AA∗) = max{1, t4} and r(A + A∗) = 1 + t2.

Since
⋂

0<ε<1
σε(A) = σ(A) [1], we have lim

ε→0
rε(A) = r(A). Thus for sufficiently small ε, t

rε(A + A∗) > rε(A) + rε(A∗),

rε(AA∗) > rε(A) rε(A∗).

The following examples give two noncommutative pairs of matrices where the sub-
additivity and sub-multiplicativity of the condition pseudospectral radius hold. Thus,
the commutativity of the operators is not necessary for the sub-additivity and sub-
multiplicativity of the condition pseudospectral radius.

Example 3.5: Consider BL(C2) with ‖ · ‖1. Let A = [ 1 0
0 0
]
,B = [ 0 1

0 0
]
.

Then AB �= BA,A + B = [ 1 1
0 0
]
and rε(A) ≥ 1 for all 0 < ε < 1. For λ ∈ C, we have

‖λI − B‖1 = 1 + |λ|and‖(λI − B)−1‖1 = 1
|λ| + 1

|λ|2 .

Then

σε(B) = {
λ ∈ C : ‖λI − B‖1‖(λI − B)−1‖1 ≥ ε−1} .

=
{
λ ∈ C : |λ| ≤

√
ε

1 − √
ε

}
.

Thus rε(B) =
√

ε

1 − √
ε
and rε(A) + rε(B) ≥ 1 +

√
ε

1 − √
ε
. From Remark 1.3, we also have

rε(A + B) ≤ 1 + ε

1 − ε
‖A + B‖1 = 1 + ε

1 − ε
= 1 + 2ε

1 − ε
.

Then for ε < 1/9 we have rε(A + B) ≤ rε(A) + rε(B).
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Example 3.6: Consider BL(C2). Let A = [ 0 0
1 0
]
and B = [ 0 0

0 1
]
. Then AB = 0 and BA �=

0. From Remark 1.3, we have rε(AB) = 0 for all 0 < ε < 1. Since A �= 0 �= B we have
rε(A) > 0 and rε(B) > 0 for all 0 < ε < 1 [1]. Thus

rε(AB) ≤ rε(A) rε(B) for all 0 < ε < 1.

In the following theorem, we show that the condition pseudospectral radius is equiva-
lent to the operator norm.

Theorem 3.7: Let A ∈ BL(X) and 0 < ε < 1. Then

‖A‖ ≤ (2 + 3ε−1) rε(A) ≤ 1 + ε

1 − ε
(2 + 3ε−1) ‖A‖.

Proof: Define δ := rε(A). Then 2δ /∈ σε(A) and

‖2δI − A‖‖(2δI − A)−1‖ < ε−1. (1)

Sinceσ(A) ⊆ σε(A), we haveD(0, δ) := {z ∈ C : |z| ≤ δ} contains an element ofσ(A) and
dist(2δ, σ(A)) ≤ 3δ. On the other hand from elementary perturbation theory, we have

dist(2δ, σ(A)) ≥ ‖(2δ − A)−1‖−1. (2)

Together with (1) and (2), we have

‖A‖ − 2δ ≤ ‖2δI − A‖ <
‖(2δI − A)−1‖−1

ε
≤ dist(2δ, σ(A))

ε
≤ 3δ

ε
.

This gives

‖A‖ ≤ (2 + 3ε−1)rε(A) ≤ 1 + ε

1 − ε
(2 + 3ε−1)‖A‖.

The last inequality follows from (3) of Remark 1.3. �

4. Condition pseudospectral radius: a complete norm in a commutative
Banach algebra

In section 3, we have proved the sub-additivity and sub-multiplicativity of the condition
pseudospectral radius for commuting pairs of operators in BL(X). The results developed
are also true for commuting elements in a complex unital Banach algebra. The proof of
the result in this general setting follows exactly as that of BL(X). In the present section,
we show that the condition pseudospectral radius becomes a complete algebra norm in a
commutative complex unital Banach algebra.

Theorem 4.1: LetA be a complex unital Banach algebra and 0 < ε < 1. Then

(1) rε(a) = 0 ⇔ a = 0.
(2) rε(αa) = |α| rε(a) ∀a ∈ A,α ∈ C.
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(3) rε(a + b) ≤ rε(a) + rε(b) ∀a, b ∈ A and ab = ba.
(4) rε(ab) ≤ rε(a)rε(b) ∀a, b ∈ A and ab = ba.

Proof: Let a, b ∈ A and α ∈ C.

(1) Since σε(a) = {0} if and only if a = 0 [1],

rε(a) = 0 if and only if a = 0.

(2) Since σε(αa) = α σε(a) [1], we have rε(αa) = |α| rε(a).
(3) Follows similarly as Theorem 3.2.
(4) Follows similarly as Theorem 3.3. �

Corollary 4.2: Let (A, ‖ · ‖) be a commutative complex unital Banach algebra and
0 < ε < 1. Then the condition pseudospectral radius rε : A → R+ is a complete algebra
norm onA.

Proof: FromTheorem 4.1, rε is an algebra norm onA for every 0 < ε < 1.We also have rε
and ‖ · ‖ are equivalent (the proof is similar to Theorem 3.7). Thus rε becomes a complete
algebra norm for every 0 < ε < 1. �

Remark 4.3: Let X be a compact Hausdorff space and

C(X) := {f : f : X → C and f is continuous}.

For f ∈ C(X) define ‖f ‖ := sup{|f (x)| : x ∈ C}. Then C(X) is a commutative complex
unital Banach algebra and σ(f ) = {f (x) : x ∈ X}. For z /∈ σ(f ),

‖ze − f ‖ = max{|z − f (x)| : x ∈ X},

‖(ze − f )−1‖ = max
{

1
|z − f (x)| : x ∈ X

}
.

Here e : X → C and e(x) = 1 for every x ∈ X. For 0 < ε < 1 we have

σε(f ) =
{
z ∈ C :

max{|z − f (x)| : x ∈ X}
min{|z − f (x)| : x ∈ X} ≥ 1

ε

}
.

Example 4.4: Consider C([0, 1]) and define f ∈ C([0, 1]) as

f (t) = t for every t ∈ [0, 1].

Then σ(f ) = [0, 1]. For 0 < ε < 1 we have

σε(f ) =
{
z = x + iy ∈ C :

max{|z − t| : t ∈ [0, 1]}
min{|z − t| : t ∈ [0, 1]} ≥ 1

ε

}
.
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(1) Let x = 1
2 . Then

σε(f ) =
⎧⎨
⎩1
2

+ iy :

√
1
4 + y2

|y| ≥ 1
ε

⎫⎬
⎭

=
{
1
2

+ iy : |y| ≤ ε

2
√
1 − ε2

}
.

(2) x < 1
2 . Then

σε(f ) =
{
x + iy :

√
(x − 1)2 + y2

|y| ≥ 1
ε

}

=
{
x + iy : |y| ≤ ε√

1 − ε2
(x − 1)

}
.

(3) x > 1
2 . Then

σε(f ) =
{
x + iy :

√
x2 + y2

|y| ≥ 1
ε

}

=
{
x + iy : |y| ≤ ε√

1 − ε2
x
}
.

Thus σε(f ) is the portion joined by the points (0, 0),
(
1
2 ,

ε

2
√
1−ε2

)
, (1, 0) and(

1
2 ,− ε

2
√
1−ε2

)
. Hence rε(f ) = max

{
1,

1
2
√
1 − ε2

}
.

5. For non-commuting pairs of operators in BL(X)

In this section, we consider a non-commuting pair of operators in BL(X) and prove
results similar to Theorem 3.2 and Theorem 3.3. We are seeking the sub-additivity and
sub-multiplicativity of the condition pseudospectral radius for a non-commuting pair of
operators in BL(X). Let A,B ∈ BL(X) and AB �= BA. In this case, we need to look for a
commuting pair of operators A1,B1 ∈ BL(X) such that A1,B1 are, respectively, close to
A, B. Define

ρ := min
A1B1=B1A1

max {‖A − A1‖, ‖B − B1‖} .

Let 0 < ε < 1. Since the map A �→ σε(A) is upper semicontinuous [1], A �→ rε(A) is a
continuous map and

|rε(A) − rε(A1)| ≤ f (A,A1, ε, ρ) (3)

|rε(B) − rε(B1)| ≤ g(B,B1, ε, ρ) (4)

|rε(A + B) − rε(A1 + B1)| ≤ h(A,B,A1,B1, ε, ρ) (5)

|rε(AB) − rε(A1B1)| ≤ k(A,B,A1,B1, ε, ρ) (6)
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for some continuous functions f, g, h and k. For δ > 0 define

U := A1

rε(A1) + δ
andV := B1

rε(B1) + δ
.

Then r(U) < 1, r(V) < 1 andUV = VU. Thus
 := {UiVj : i, j ≥ 0} becomes a bounded
semi-group under multiplication. From Lemma 3.1, there exists a function p : BL(X) →
R+ satisfying all four conditions stated in the lemma. In particular,

p
(

A1

rε(A1) + δ

)
≤ 1 and p

(
B1

rε(B1) + δ

)
≤ 1.

Also

p(A1) ≤ rε(A1) + δ and p(B1) ≤ rε(B1) + δ.

Thus,

rε(A + B) ≤ rε(A1 + B1) + h ≤ p(A1 + B1) + h (7)

≤ p(A1) + p(B1) + h (8)

≤ rε(A1) + δ + rε(B1) + δ + h (9)

≤ rε(A) + rε(B) + f + g + h + 2δ. (10)

Since δ > 0 is as an arbitrary positive value by letting δ → 0, we have

rε(A + B) ≤ rε(A) + rε(B) + f + g + h.

Whenever A, B commute, choose f = g = h = 0 and we have Theorem 3.2. We also have

rε(AB) ≤ rε(A1B1) + k ≤ p(A1B1) + k (11)

≤ p(A1)p(B1) + k (12)

≤ (rε(A1) + δ)(rε(B1) + δ) + k (13)

≤ (rε(A) + f + δ)(rε(B) + g + δ) + k. (14)

By letting δ → 0 we obtain

rε(AB) ≤ (rε(A) + f )(rε(B) + g) + k

Whenever A, B commute, choose f = g = k = 0 and we have Theorem 3.3.
The following proposition follows from Theorem 3.7.

Proposition 5.1: Let A,B ∈ BL(X) and 0 < ε < 1. Then

(1) rε(A + B) ≤ 1 + ε

1 − ε
(2 + 3ε−1)[rε(A) + rε(B)].

(2) rε(AB) ≤ 1 + ε

1 − ε
(2 + 3ε−1)2[rε(A) rε(B)]
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Note 5.2: In Proposition 5.1 define f (ε) = 1 + ε

1 − ε
(2 + 3ε−1) and g(ε) = 1 + ε

1 − ε
(2 +

3ε−1)2. Then

(1) f

(√
30 − 3
7

)
≤ f (ε) for every 0 < ε < 1.

(2) g(0.5306) ≤ f (ε) for every 0 < ε < 1.

5.1. Almost commuting finite-dimensional operators

Definition 5.3: Let A,B ∈ BL(X) and δ > 0. Then A and B are said to be δ-almost com-
mutative if ‖AB − BA‖ ≤ δ. If δ > 0 is sufficiently small then A, B are called almost
commutative.

The following results for almost commuting matrices are available in the literature.

(1) Let A,B ∈ BL(CN) with A = A∗ and ‖AB − BA‖ ≤ 2δ2

N − 1
for some δ ≥ 0. Then

there exist A1,B1 ∈ CN×N with A∗
1 = A1 such that A1B1 = B1A1, ‖A − A1‖ ≤ δ and

‖B − B1‖ ≤ δ [10].
(2) There exist A,B ∈ BL(CN) such that ‖AB − BA‖ ≤ δ for some δ > 0 and A, B may

not be near to any commuting pairs [11].
(3) Let A,B ∈ BL(CN) such that ‖A‖ ≤ 1, ‖B‖ ≤ 1 and ‖AB − BA‖ ≤ δ for some δ ≥ 0.

Using non-standard analysis, the authors proved in [12] that there exists a commut-
ing pair A′,B′ with ‖A′‖ ≤ 1, ‖B′‖ ≤ 1 such that ‖A − A′‖ ≤ fN(δ) and ‖B − B′‖ ≤
fN(δ). The constant fN(δ) is dependent on the pair A, B and the order of the matrices
N, such that fN(δ) → 0 as δ → 0.

Thus (1), (2) and (3) together show that finding a quantity independent of the order
of the matrix and depending only on the constant δ is not possible. If A is self-adjoint,
then it is possible to find a constant which is independent of the order of the matrices.
The following lemma is the condition pseudospectral version of Lemma 4.1 in [7] (the
pseudospectral version).

Lemma 5.4: Let A ∈ BL(CN) and 0 < ε < 1. Further assume that there exists z ∈ σε(A)

such that |z| = rε(A). Then for any c ∈ C with ‖A − zI‖ ≤ ‖A − (z + c)I‖ and ‖A − (z +
c)I‖ ≥ 1,

rε(A) + |c| ≤ rε+|c|(A).

Proof: Let z ∈ σε(A) and |z| = rε(A). There exist some non-zero vector u ∈ CN , E ∈
CN×N with ‖E‖ ≤ ε‖A − zI‖ such that (A + E)u = zu [1]. Then for any c ∈ C

(A + E + cI)u = (z + c)u,
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which means that z + c ∈ σ(A + E + cI). Since

‖E + cI‖ ≤ ε‖A − zI‖ + |c| ≤ ε‖A − (z + c)I‖ + |c|‖A − (z + c)I‖,
we have z + c ∈ σε+|c|(A). Thus rε(A) + |c| ≤ rε+|c|(A). �

The following theorem extends the result proved in Section 3 to almost commuting
matrices.

Theorem 5.5: Let A,B ∈ BL(CN) and 0 < ε < 1. Further assume that ‖A‖ ≤ 1, ‖B‖ ≤ 1,
‖AB − BA‖ ≤ δ for some δ ≥ 0. Then there exists a function l(δ, ε) such that

rε(A + B) ≤ rε(A) + rε(B) + 3 l(δ, ε),

rε(AB) ≤ [rε(A) + l(δ, ε)][rε(B) + l(δ, ε)] + l(δ, ε)

and for each fixed ε, l(δ, ε) → 0 whenever δ → 0.

Proof: From [12], there exists f (δ) such that ‖A − A′‖ ≤ f (δ), ‖B − B′‖ ≤ f (δ) and
f (δ) → 0 as δ → 0. To simplify the notation, we have suppressed the dependence of N
on all functions [7]. Since the map A �→ rε(A) is continuous, equations (3)–(6) imply

|rε(A) − rε(A′)| ≤ l(δ, ε)

|rε(B) − rε(B′)| ≤ l(δ, ε)

|rε(A + B) − rε(A′ + B′)| ≤ l(δ, ε)

|rε(AB) − rε(A′B′)| ≤ l(δ, ε)

for some l(δ, ε) and for each fixed 0 < ε < 1 we have l(δ, ε) going to zero whenever δ goes
to zero. The last two assertions follows from the fact that the matrix addition and matrix
multiplication are continuous operations. From (7) to (10), we have

rε(A + B) ≤ rε(A) + rε(B) + 3 l(δ, ε).

From (11) to (14), we have

rε(AB) ≤ [rε(A) + l(δ, ε)][rε(B) + l(δ, ε)] + l(δ, ε).

We also have for each 0 < ε < 1, l(δ, ε) → 0 whenever δ → 0. �
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