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Abstract. We give an elementary proof of a result which characterizes onto

*-isomorphisms of the algebra BL(H) of all the bounded linear operators on
a Hilbert space H. A known proof of this result (Arveson, 1976) relies on the
theory of irreducible representations of C∗-algebras, whereas the proof given
by us is based on elementary properties of operators on a Hilbert space which
can be found in any introductory text on Functional Analysis.

1. Introduction

The aim of this note is to give an elementary proof of the following theorem that
characterizes onto *-isomorphisms of the algebra BL(H) of all the bounded linear
operators on a Hilbert space H.

Theorem 1.1. Let H and K be Hilbert spaces and let Φ be a ∗-isomorphism from
BL(H) onto BL(K). Then there exists a unitary operator U : H → K such that
Φ(T ) = UTU∗ for all T ∈ BL(H).

The classical proof of this theorem relies on the theory of irreducible representa-
tions of C∗-algebras (see, for example, [1]). Our proof uses only very basic properties
of the operators between Hilbert spaces, which can be found in any introductory
text on Functional Analysis, for example [2] or [3]. Some of these properties are
also mentioned explicitly at the beginning of the next section. In particular, we
do not use any concept involving the spectrum of an operator. This elementary
nature of our proof has an added advantage, namely that it works for both real
as well as complex Hilbert spaces, whereas in the classical literature, this theorem
is stated and proved only for complex Hilbert spaces. Also, the classical version
of the theorem stated above does not say anything about the uniqueness of the
unitary operator U . On the other hand, we have proved by elementary methods
that the operator U is unique up to a scalar multiple of absolute value 1. We thank
Professor B. V. Limaye, I. I. T. Bombay, for drawing our attention to this question
of uniqueness and also for several other useful suggestions.
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2. Main result

Let H, K be Hilbert spaces. We denote by BL(H, K) the set of all bounded linear
maps from H to K, and BL(H, H) will be denoted by BL(H). For T ∈ BL(H, K),
T ∗ will denote the adjoint of T , N(T ), the null space of T , R(T ), the range of T
and Rank(T ), the dimension of R(T ).

In what follows, we shall make repeated use of some well-known facts about
orthogonal projections. For a ready reference, we collect those facts in the following
theorem. Proofs can be found in any introductory text on Functional Analysis (e.g.,
[2], [3]).

Theorem 2.1. Let H be a Hilbert space.
(1) Let P ∈ BL(H) be a projection, that is, P 2 = P . Then P is orthogonal

(that is, R(P ) ⊥ N(P )) ⇔ P ∗ = P (that is, P is self adjoint).
(2) Let P, Q be orthogonal projections in BL(H). Then:

(a) R(P ) ⊆ R(Q) ⇔ PQ = P = QP .
(b) R(P ) ⊥ R(Q) ⇔ PQ = 0 = QP .

In addition to the above, we shall need some properties of operators and projec-
tions of rank one. We prove these in the following proposition.

Proposition 2.2. Let H be a Hilbert space. For x, y ∈ H define the operator Tx,y

on H by
Tx,y(u) = 〈u, y〉x, u ∈ H,

and let Px := Tx,x. Then the following statements hold:
(1) For x, y ∈ H, Tx,y ∈ BL(H) and Rank(Tx,y) = 1.
(2) For x, y ∈ H, and scalars α, β, Tαx,βy = αβTx,y.

In particular, Pλx = Px for all scalars λ with |λ| = 1.
(3) If x ∈ H with ‖x‖ = 1, then Px is an orthogonal projection of rank 1.
(4) If P ∈ BL(H) is an orthogonal projection of rank 1, then there exists x ∈ H

with ‖x‖ = 1 such that P = Px.
(5) For x, y ∈ H with ‖x‖ = 1 = ‖y‖,

〈x, y〉 = 0 ⇔ PxPy = 0 = PyPx.

(6) For x, y, z ∈ H, Tx,zTy,x = 〈y, z〉Px.
(7) For x, y ∈ H, (Tx,y)∗ = Ty,x.
(8) Let x, y, z ∈ H with ‖x‖ = 1 = ‖y‖ . Then

Tx,yPz =
{

0, if 〈z, y〉 = 0,
Tx,y, if z = y.

Also
PxTx,y = Tx,y, Tx,yTy,z = Tx,z.

In particular, Tx,yTy,x = Px.
(9) Let T ∈ BL(H) be of rank 1. Then there exist x, y ∈ H with ‖x‖ = 1 such

that T = Tx,y. In fact, x can be chosen as any element of norm 1 in R(T )
and in that case y = T ∗(x).

Proof. Results in (1) and (2) involve routine verification.
(3) Let x ∈ H with ‖x‖ = 1. Then Px(x) = x. Hence for all u ∈ H,

P 2
x (u) = Px(〈u, x〉x) = 〈u, x〉x = Px(u).
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Thus Px is a projection. Also R(Px) = span({x}). Hence, Rank(Px) = 1. Next,
for u ∈ H, u ∈ N(Px) ⇔ 〈u, x〉x = 0. This shows that N(Px) ⊥ R(Px).

(4) Suppose P is an orthogonal projection of rank 1. Then P ∗ = P by Theorem
2.1 and there exists x ∈ H with ‖x‖ = 1 such that R(P ) = span({x}). Let u ∈ H.
Then

P (u) = 〈P (u), x〉x = 〈u, P ∗(x)〉x = 〈u, P (x)〉x = 〈u, x〉x = Px(u).

Thus P = Px.
(5) For x, y ∈ H with ‖x‖ = 1 = ‖y‖,

〈x, y〉 = 0 ⇔ R(Px) ⊥ R(Py) ⇔ PxPy = 0 = PyPx.

(6) For x, y, z, u ∈ H,

Tx,zTy,x(u) = Tx,z(〈u, x〉y) = 〈u, x〉Tx,z(y) = 〈u, x〉〈y, z〉x = 〈y, z〉Px(u).

(7) For x, y, u, v ∈ H,

〈u, (Tx,y)∗(v)〉 = 〈Tx,y(u), v〉 = 〈u, y〉〈x, v〉
= 〈u, 〈x, v〉y〉 = 〈u, 〈v, x〉y〉 = 〈u, Ty,x(v)〉.

(8) For x, y ∈ H with ‖x‖ = 1 = ‖y‖, and z, u ∈ H,

Tx,yPz(u) = Tx,y(〈u, z〉z) = 〈u, z〉Tx,y(z) = 〈u, z〉〈z, y〉x.

We observe that

〈u, z〉〈z, y〉x =
{

0, if 〈z, y〉 = 0,
〈u, y〉x, if z = y.

Other assertions can be proved in a similar way.
(9) Let x ∈ R(T ) with ‖x‖ = 1 and y = T ∗(x). Since Rank(T ) = 1, we have

R(T ) = span({x}), and hence for any u ∈ H,

T (u) = 〈T (u), x〉x = 〈u, T ∗(x)〉x = 〈u, y〉x = Tx,y(u).

Thus T = Tx,y. �

We now proceed to prove the main theorem. Recall that for Hilbert spaces
H, K, a linear map Φ : BL(H) → BL(K) is called an isomorphism if it is one-one
and Φ(TS) = Φ(T )Φ(S) for all T, S ∈ BL(H). An isomorphism Φ is called a
*-isomorphism if Φ(T ∗) = (Φ(T ))∗ for all T ∈ BL(H).

Theorem 2.3. Let H and K be Hilbert spaces and let Φ be a *-isomorphism from
BL(H) onto BL(K). Then there exists a unitary operator U : H → K such that
Φ(T ) = UTU∗ for all T ∈ BL(H). Further, this unitary operator U is unique up
to a scalar multiple of absolute value 1, that is, if U : H → K and V : H → K are
unitary operators satisfying UTU∗ = Φ(T ) = V TV ∗ for all T ∈ BL(H), then there
exists a scalar λ, such that |λ| = 1 and V = λU .

Proof. We divide the proof into five steps.

Step 1. For each x ∈ H with ‖x‖ = 1, there exists x̃ ∈ K with ‖x̃‖ = 1 such that
Φ(Px) = Px̃.

Let x ∈ H with ‖x‖ = 1. By Proposition 2.2, Px is an orthogonal projection of
rank 1. Then

(Φ(Px))2 = Φ((Px)2) = Φ(Px).
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Hence Φ(Px) is a projection. Also since

(Φ(Px))∗ = Φ((Px)∗) = Φ(Px),

Φ(Px) is a self-adjoint and hence orthogonal projection.
We claim that Φ(Px) is of rank 1. If not, there exist y, z ∈ R(Φ(Px)) such

that ‖y‖ = 1 = ‖z‖ and 〈y, z〉 = 0. Consider the orthogonal projections Py, Pz in
BL(K). Since

R(Py) = span({y}) ⊆ R(Φ(Px)),

we have PyΦ(Px) = Py. Since Φ−1 is also a *-isomorphism, we have Φ−1(Py) is an
orthogonal projection and Φ−1(Py)Px = Φ−1(Py). Hence

R(Φ−1(Py)) ⊆ R(Px).

Similarly,
R(Φ−1(Pz)) ⊆ R(Px).

Now there exist nonzero elements u ∈ R(Φ−1(Py)) and v ∈ R(Φ−1(Pz)). Then
u, v ∈ R(Px) = span({x}). On the other hand, since 〈y, z〉 = 0, PyPz = 0, so that
Φ−1(Py)Φ−1(Pz) = 0. Thus

R(Φ−1(Py)) ⊥ R(Φ−1(Pz)),

consequently, u ⊥ v, a contradiction, proving the claim. Thus Φ(Px) is an orthogo-
nal projection of rank 1. Hence by Proposition 2.2 there exists x̃ ∈ K with ‖x̃‖ = 1
such that Φ(Px) = Px̃.

Step 2. The construction of the unitary map U .

Fix x0 ∈ H with ‖x0‖ = 1. Using Step 1, choose x̃0 ∈ K with ‖x̃0‖ = 1 such
that Φ(Px0) = Px̃0 . Now define U : H → K by

U(y) := Φ(Ty,x0)(x̃0), y ∈ H.

Note that

U(x0) := Φ(Tx0,x0)(x̃0) = Φ(Px0)(x̃0) = Px̃0(x̃0) = x̃0.

Clearly, U is linear by Proposition 2.2. Now to prove that U is unitary, consider
y, z ∈ H. Then,

〈U(y), U(z)〉 = 〈Φ(Ty,x0)(x̃0), Φ(Tz,x0)(x̃0)〉
= 〈(Φ(Tz,x0))

∗Φ(Ty,x0)(x̃0), x̃0〉
= 〈Φ((Tz,x0)

∗)Φ(Ty,x0)(x̃0), x̃0〉
= 〈Φ(Tx0,zTy,x0)(x̃0), x̃0〉
= 〈Φ(〈y, z〉Px0)(x̃0), x̃0〉
= 〈y, z〉〈Px̃0(x̃0), x̃0〉
= 〈y, z〉〈x̃0, x̃0〉 = 〈y, z〉.

This proves that U preserves inner products. Next we prove that U is onto. This
will imply that U is unitary. For this, let v ∈ K and consider

y := (Φ−1(Tv,x̃0))(x0).
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Then, for u ∈ H,

Ty,x0(u) = 〈u, x0〉y
= 〈u, x0〉(Φ−1(Tv,x̃0))(x0)

= (Φ−1(Tv,x̃0))Px0(u).

Hence,
Ty,x0 = Φ−1(Tv,x̃0)Px0 .

Thus,
Φ(Ty,x0) = Tv,x̃0Φ(Px0) = Tv,x̃0Px̃0 = Tv,x̃0 .

The last equality follows from Proposition 2.2(8). Now

U(y) := Φ(Ty,x0)(x̃0) = Tv,x̃0(x̃0) = 〈x̃0, x̃0〉v = v.

This proves that U is onto and hence unitary.

Step 3. Φ(T ) = UTU∗ for all T ∈ BL(H) with Rank(T ) = 1.

First we prove this for T = Tx0,y for y ∈ H. So, let y ∈ H. Then, for all u ∈ H,

Φ(Tx0,y)(U(u)) = Φ(Tx0,y)Φ(Tu,x0)(x̃0)
= Φ(Tx0,yTu,x0)(x̃0) = Φ(〈u, y〉Px0)(x̃0)
= 〈u, y〉Φ(Px0)(x̃0)
= 〈u, y〉Px̃0(x̃0)
= 〈u, y〉x̃0

= 〈u, y〉U(x0)
= U(〈u, y〉x0)
= UTx0,y(u).

Thus Φ(Tx0,y)U = UTx0,y, that is, Φ(Tx0,y) = UTx0,yU∗.
Next, let T ∈ BL(H) with Rank(T ) = 1. By Proposition 2.2(9), there exist

x, y ∈ H with ‖x‖ = 1 such that T = Tx,y. But,

Tx,y = Tx,x0Tx0,y = (Tx0,x)∗Tx0,y.

Hence

Φ(T ) = (Φ(Tx0,x))∗Φ(Tx0,y)
= (UTx0,xU∗)∗UTx0,yU∗

= U(Tx0,x)∗U∗UTx0,yU∗

= UTx,x0Tx0,yU∗

= UTx,yU∗

= UTU∗.

Step 4. Φ(T ) = UTU∗ for all T ∈ BL(H).

Let T ∈ BL(H) and let x ∈ H with ‖x‖ = 1. Then Rank(TPx) is 0 or 1. Hence
by Step 3,

UTPxU∗ = Φ(TPx) = Φ(T )Φ(Px) = Φ(T )UPxU∗.

Now evaluating both sides of the above equation at U(x) and observing that
U∗U(x) = x and Px(x) = x, we get UT (x) = Φ(T )U(x). Since this holds for
all x ∈ H with ‖x‖ = 1, we have UT = Φ(T )U , that is, Φ(T ) = UTU∗.
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Step 5. Uniqueness of U .

Suppose U : H → K and V : H → K are unitary operators satisfying UTU∗ =
Φ(T ) = V TV ∗ for all T ∈ BL(H). Then we note that for all y ∈ H, y = Ty,x0(x0).
Hence

V (y) = V Ty,x0(x0)
= V Ty,x0V

∗V (x0)
= UTy,x0U

∗V (x0)
= U(〈U∗V (x0), x0〉y)
= 〈U∗V (x0), x0〉U(y).

Thus V = λU , where λ = 〈U∗V (x0), x0〉 = 〈V (x0), U(x0)〉. Since U and V are
unitary, |λ| = 1. This completes the proof of the theorem. �
Remark 2.4. A careful examination of the proof of Theorem 2.3 shows that the
proof works even if we replace BL(H) by a *-subalgebra A ⊆ BL(H) and BL(K)
by a *-subalgebra B ⊆ BL(K) such that A and B contain all operators of rank 1.
In particular, we can take A = CL(H), the algebra of all compact operators on H,
and B = CL(K), the algebra of all compact operators on K. In fact, in [1] this
theorem is first proved for the *-isomorphism of CL(H) and then extended to the
case of the *-isomorphism of BL(H).

Remark 2.5. Note that we have not used the continuity of Φ in our proof of Theorem
2.3. It is a consequence of Theorem 2.3. The usual proof of this fact involves spectral
considerations, whereas our proof does not.
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