
g′(z) = g(z)
p−1∑
k=0

ωk cot(ωk z) =
(

z p − ζ(2p)

π2p
z3p + · · ·

) p−1∑
k=0

ωk cot(ωkz). (5)

To evaluate ζ(2p) we equate the coefficient of z3p−1 in (4) with that in (5). Con-
tributions to this coefficient in (5) come from two sources arising from the Laurent
expansion of the sum of cotangents, namely, from the coefficient of z−1 and from the
coefficient of z2p−1. Because

cot z = 1

z
+

∞∑
r=1

cr z2r−1,

where cr = (−1)r 22r B2r/(2r)!,

ωk cot(ωk z) = 1

z
+ ωk

∞∑
r=1

cr (ω
k z)2r−1 = 1

z
+

∞∑
r=1

crω
2rkz2r−1.

When this is summed over k the total contribution from z−1 is p, while that from z2p−1

is pcp, because ω2kp = 1. Equating the coefficient of z3p−1 in (4) with the correspond-
ing one in (5), we find that

−3p
ζ(2p)

π2p
= −p

ζ(2p)

π2p
+ pcp.

This gives ζ(2p) = −cpπ
2p/2 = (−1)p+122p−1 B2p/(2p)!, as required.
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A Very Simple and Elementary Proof of a
Theorem of Ingelstam

S. H. Kulkarni

1. INTRODUCTION. The aim of this note is to give a very simple and elementary
proof of the following interesting theorem due to Ingelstam [4].
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Theorem 1.1. Let A be a real algebra with unit 1. Suppose that A is also a real
Hilbert space such that ‖1‖ = 1 and ‖ab‖ ≤ ‖a‖‖b‖ for all a and b in A. Then A is
isomorphic to the algebra R of real numbers, the algebra C of complex numbers, or
the algebra H of real quaternions.

The words “very simple and elementary” in the title mean that any undergraduate
student who has taken a decent linear algebra course should be able to understand this
proof. Though the statement of the theorem contains the words “Hilbert space,” we
do not assume any familiarity with Hilbert spaces. We assume only some well-known
properties of inner product spaces that are stated explicitly in the next section. We also
replace some of the assumptions in the theorem by weaker assumptions. (See Theorem
3.1 for the precise statement.)

Ingelstam’s proof of Theorem 1.1 used techniques from Banach algebras, specif-
ically the vertex property for Banach algebras. Subsequently, progressively simpler
proofs were given by Smiley [6], Froelich [3], and Zalar [7]. However all these proofs
also made use of Banach algebra techniques. The proofs of Smiley and Froelich
used the Gelfand theory, whereas the proof of Zalar used the famous theorem due to
Gelfand, Mazur, and Arens asserting that every normed division algebra is isomorphic
to R, C, or H. As mentioned earlier, we do not use any of these results. Our proof
applies to the case of a real associative algebra with unit. Zalar’s paper [7] also con-
tains proofs for the case of algebras without unit. The proofs are not elementary and
use ideas related to topological divisors of zero. It would be interesting to know if
an elementary proof can be found for this case as well. In the same paper, Zalar also
considered the case of nonassociative algebras.

2. PRELIMINARIES. We assume that the reader has knowledge of the following:
real vector space, real inner product space, and ring. We use the following standard
facts about a real inner product space.

Let 〈, 〉 denote the inner product on an inner product space V . For an arbitrary subset
S of V , we denote by S⊥ the orthogonal complement of S. Thus

S⊥ := {
x ∈ V : 〈x, s〉 = 0 for all s ∈ S

}
.

The inner product 〈, 〉 induces a norm on V given by ‖a‖ = 〈a, a〉1/2 for a in V .

Fact 1. Let S be a finite subset of an inner product space V . Then S⊥ = {0} if and
only if span(S) = V . This follows by observing that if S = {a1, . . . , an} and x is in V ,
then x −∑n

j=1〈x, a j 〉a j belongs to S⊥.

Fact 2 (Cauchy- Schwarz inequality). For all x and y in V ,
∣∣〈x, y〉∣∣ ≤ ‖x‖‖y‖,

and equality holds if and only if {x, y} is a linearly dependent set.

A real algebra A is a real vector space on which a binary operation of multiplication
is defined that makes A into a ring (with respect to addition and multiplication of
vectors) and also satisfies (αa)b = α(ab) = a(αb) for all a, b in A and α in R.

Examples of real algebras include the field R of real numbers (with the usual op-
erations), the field C of complex numbers, and the division ring H of real quater-
nions. The last of these algebras is constructed by defining a multiplication on the real
vector space R

4 as follows. Let 1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), and
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k = (0, 0, 0, 1) denote the usual standard basis vectors of R
4. Define

12 = 1, 1i = i = i1, 1 j = j = j1, 1k = k = k1,

i2 = j2 = k2 = −1, i j = − j i = k, jk = −k j = i, ki = −ik = j,

and extend this multiplication to R
4 by linearity.

The essence of our main theorem is that under certain conditions these three are the
only examples of real algebras. For other examples of algebras and also for the theory
of Banach algebras, the interested reader may refer to [2] or [5].

3. MAIN THEOREM. As in [7], we replace the hypotheses in Ingelstam’s theorem
(Theorem 1.1) by the weaker assumptions:

(1) A is a real inner product space (instead of a real Hilbert space).
(2) The inequality ‖a2‖ ≤ ‖a‖2 holds for all a in A (in place of the original as-

sumption that ‖ab‖ ≤ ‖a‖‖b‖ for all a and b in A).

Theorem 3.1. Let A be a real algebra with unit 1. Suppose that A is also a real inner
product space such that ‖1‖ = 1 and ‖a2‖ ≤ ‖a‖2 for all a in A. Then A is isomorphic
to R, C, or H.

Proof. We first establish the following two claims.

Claim 1. If x belongs to {1}⊥ and ‖x‖ = 1, then x2 = −1.

We argue as in [7]. For each t in R, we have

(t2 + 1)2 = (‖t + x‖2
)2 ≥ ∥∥(t + x)2

∥∥2 = 〈t2 + 2t x + x2, t2 + 2t x + x2〉.
This implies that

2t2
(
1+ 〈1, x2〉)+ 4t〈x, x2〉 + ‖x2‖2 − 1 ≤ 0.

Since this holds for all real t , we have

1+ 〈1, x2〉 ≤ 0

that is

〈1, x2〉 ≤ −1.

The Cauchy-Schwartz inequality implies that 〈1, x2〉 = −1. The condition for equality
in the Cauchy-Schwartz inequality ensures that x2 = −1.

Claim 2. If x and y are in {1}⊥ , 〈x, y〉 = 0, and ‖x‖ = 1 = ‖y‖, then yx = −xy.

Since x and y belong to {1}⊥, we have (x + y)/
√

2 in {1}⊥. Also, since 〈x, y〉 = 0
and ‖x‖ = 1 = ‖y‖, we obtain ‖(x + y)/

√
2‖ = 1. Hence, by Claim 1, x2 = −1 = y2

and ((x + y)/
√

2)2 = −1. This implies that xy + yx = 0.
We now move to the proof of the theorem. If {1}⊥ = {0}, then by Fact 1 we have

A = span{1}, which is isomorphic to R.
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Now suppose that {1}⊥ �= {0}. Then there exists x in {1}⊥ with ‖x‖ = 1. By
Claim 1, x2 = −1. If A = span{1, x}, then A is obviously isomorphic to C. Other-
wise there exists y in {1, x}⊥ with ‖y‖ = 1. By Claim 1, y2 = −1, and by Claim 2,
yx = −xy. Consider z = xy. Then

z2 = xyxy = −yxxy = −y(−1)y = y2 = −1.

Also,

yz = yxy = −xy2 = x, zy = xy2 = −x,

zx = xyx = −yx2 = y, xz = xxy = −y.

Thus we have shown that x2 = y2 = z2 = −1, xy = −yx = z, yz = −zy = x , and
zx = −xz = y. These relations also imply that {1, x, y, z} is a linearly independent
set. For if u = α + βx + γ y + δz = 0, consider v = α − βx − γ y − δz. Then 0 =
uv = α2 + β2 + γ 2 + δ2, that is, α = β = γ = δ = 0 . Thus span{1, x, y, z} is iso-
morphic to H. Now if A = span{1, x, y, z}, then A is isomorphic to H. If not, there ex-
ists u in {1, x, y, z}⊥ with ‖u‖ = 1. By Claim 1, u2 = −1, and by Claim 2, xu = −ux ,
yu = −uy, and zu = −uz. But then

uz = u(xy) = (ux)y = (−xu)y = −x(uy) = −x(−yu) = (xy)u = zu = −uz.

Hence uz = 0. On the other hand, since uz = zu, we also have (uz)2 = u2z2 =
(−1)(−1) = 1. This is clearly impossible. (This last part of the proof follows the lines
of the proof of the Gelfand-Mazur-Arens theorem as given in [2].)

Remark. Froelich’s proof [3] contains a small (fixable) gap. In the proof, Froelich
shows that A/M is a field (in fact, a real commutative normed division algebra) and
concludes that A/M is isomorphic to R. This is incorrect, for a real commutative
normed division algebra can be isomorphic to either R or C. If A/M is isomorphic
to R, Froelich’s proof works. If A/M is isomorphic to C, then the composition of
this isomorphism with the quotient map of A onto A/M is a (real algebra) homomor-
phism φ of A onto C. Now define q : A → R by q(x) = Re φ(x) for x in A. Then q is
a continuous linear functional on A, with ‖q‖ = 1 = q(1). The remaining part of the
proof is the same as that given in [3].

In [1], the following analogue of Theorem 3.1 for real *-algebras was proved. Since
the proof presented in [1] was based on Theorem 3.1, it can now be regarded as ele-
mentary. We include the theorem and a sketch of its proof for the sake of completeness.
We recall that a real *-algebra is a real algebra A with a mapping a → a∗ of A into A
that satisfies the following axioms:

(1) (a + b)∗ = a∗ + b∗ for all a and b in A;
(2) (αa)∗ = αa∗ for all a in A and α in R;
(3) (ab)∗ = b∗a∗ for all a and b in A;
(4) (a∗)∗ = a for all a in A.

Examples of real *-algebras include the field R of real numbers (with a∗ = a for
all a), the field C of complex numbers (with a∗ defined to be the complex conjugate
of a), and the division ring H of real quaternions, where for a = α + βi + γ j + δk
in H, a∗ is defined by a∗ = α − βi − γ j − δk. For other examples of *-algebras and
also for the theory of Banach *-algebras , the interested reader may refer to [2] or [5].
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Theorem 3.2. Let A be a real *-algebra with unit 1 satisfying the following condition:
for a in A, a∗a = 0 implies that a = 0. Suppose that A is also a real inner product
space such that ‖1‖ = 1 and ‖a∗a‖ ≤ ‖a‖2 for all a in A. Then A is isomorphic to R,
C, or H.

Proof. Let Sym(A) := {a ∈ A : a∗ = a}, and let a belong to Sym(A). Consider the
subalgebra B of A that comprises all polynomials in a with real coefficients. Then
B is contained in Sym(A). Hence B satisfies hypotheses of Theorem 3.1. Since B is
also commutative, B is isomorphic to R or C. Hence a = λ1 for some real or complex
number λ. This shows that Sym(A) itself is isomorphic to R or C. Now the conclusion
follows from Lemma 2.1 of [1].

ACKNOWLEDGMENTS. The author thanks the referee for several suggestions that improved this note. A
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The Early History of the
Ham Sandwich Theorem
W. A. Beyer and Andrew Zardecki

The following theorem is the well-known ham sandwich theorem: for any three given
sets in Euclidean space, each of finite outer Lebesgue measure, there exists a plane that
bisects all three sets, i.e., separates each of the given sets into two sets of equal mea-
sure. The early history of this result seems not to be well known. Stone and Tukey [2]
attribute the theorem to Ulam. They say they got the information from a referee. Is this
correct? The problem appears in The Scottish Book [1] as problem 123. The problem
is posed by Steinhaus. A reference is made to the pre-World War II journal Mathesis
Polska (Latin for “Polish Mathematics”). This journal is not easy to locate. It was fi-
nally located in the mathematics library of the University of Illinois, which seems to
be the only library in the United States having the complete journal. One of the items
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