
FINITE DIMENSIONAL APPROXIMATIONS OF THE OPERATOR

EQUATIONS

BY

R. BALASUBRAMANIAN, S.H. KULKARNI AND R. RADHA

Abstract. The problem of finding solution of a tridiagonal operator equation through
its finite dimensional truncations is discussed. Effectively verifiable sufficient conditions

are given. An algorithm is presented to compute the numerical approximation to the

solution of Tx = y for a given tridiagonal operator. This is illustrated with a numerical
example.
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1. Introduction

Let H be a separable Hibert space with an inner product <,> and an orthonormal
basis E = {en : n = 1, 2, 3, · · · }. Let Hn denote the linear span of {e1, · · · , en}, Pn, the
orthogonal projection of H onto Hn. For x =

∑
i αiei ∈ H, we shall denote by xn =

Pn(x) =
∑n

i=1 αiei ∈ Hn. Let T ∈ B(H), the class of bounded linear operators on H
and let Tn = PnT |Hn . Tn will be called truncation of T to Hn. These are also known
as Galerkin approximations or finite sections[5]. The spectrum of T will be denoted by
σ(T ). Throughout this note we shall not distinguish between the operator T and its matrix
[< Tej , ei >] with respect to the basis E. Thus matrix of Tn will consist of the first n rows
and n columns of the matrix of T .

There are two very natural questions associated with this setting:

(1) Can we compute σ(T ) (or at least find some information about σ(T )) if we know
σ(Tn) for all n?

(2) Given y ∈ H, can we derive some information about solution(s) of the operator
equation Tx = y if we know solutions of the equations Tnx

n = yn for all n?

Regarding the first question, it is well known that attempts to derive some information
about σ(Tn) from σ(T ) can fail dramatically. A well known example in this connection is
that of the right shift operator T : l2 → l2 defined by

T (x) = (0, α1, α2, · · · ), x = (α1, α2 · · · ) ∈ l2.
1
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Then σ(Tn) = {0} for all n, where as σ(T ) = {z ∈ C : |z| ≤ 1} (cf. Arveson [1]). Similar
situation holds for the second question as well.

Even if all finite dimensional truncations Tn of an operator T are invertible, T may not
be invertible. For example, consider T : l2 → l2 defined by

Tx =
(
α1,

α2

2
, · · · αn

n
, · · ·

)
, x = (α1, α2, · · · ) ∈ l2

Then each Tn is invertible and T−1
n is given by T−1

n (α1, α2, · · ·αn) = (α1, 2α2, · · ·nαn).
But T is not invertible as σ(T ) = {0} ∪ { 1

n : n ∈ N}.

This raises a natural question: Are there any conditions that the operator T must satisfy
so that these attempts have some success?

Arveson ([1],[2]) has given the following answer in the context of the first question: the
success of these attempts (of computing σ(T ) from σ(Tn)) depends on whether T belongs
to a certain C* algebra. In view of this, Arveson suggests the following:

”Numerical problems involving infinite dimensional operators require reformulation in
terms of C* algebras.”

Similar issues about the second question are discussed by Bottcher and Silbermann [5]
for Toeplitz and Block Toephlits operators. In this note, we deal with this question for
a tridiagonal operator. The next section contains a theorem (Theorem 2.1) which gives
sufficient conditions for the convergence of T−1

n (yn) to T−1(y). We also give effectively
verifiable criterion to check that the condition in this theorem are satisfied (Corollary 2.2).
In the last section, we present an algorithm to implement this procedure and illustrate this
with a numerical example. This algorithm is presented only for the purpose of illustration of
the main results. The questions of speed, storage, complexity, stability, possible intermediate
break-down etc.of this algorithm are not yet investigated and hence no claims are made in
this regard.

The above example also highlights the essential difference in operators defined on finite
dimensional and infinite dimensional Hilbert spaces. We know that in the case of finite
matrices, row or column dominance will lead to the invertibility. The above example shows
that this is not true in the case of infinite matrices. However if there is a strict row dominance
as well as column dominance one can show that the operator is invertible (see [4]). Then
the natural question is whether we can extend the notion to a block of rows and columns
satisfying the dominance property, in which each row and column need not satisfy such
a property. In fact, in [4], it is shown that if all finite truncations Tn of a tridiagonal
operator T have in appropriate sense row and column dominance property, then T satisfies
the hypothesis of Theorem 2.1. of this note. (see also Corollary 2.2 and example 2.3).

2. Tridiagonal Operators

If an operator can be reduced to a diagonal form, then it is easy to answer the above
questions. But reducing the operator into a diagonal form is rather exceptional and a more
realistic approach is to find a basis in which the operator has a sparse representation. A more
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common example of a sparse matrix is a band limited matrix, with a finite band surrounding
the main diagonal. The simplest among the band limited matrices is a tridiagonal operator.
The tridiagonal operators themselves find their importance in various problems such as
boundary value problems with finite difference method, cubic spline interpolation, almost
Mathieu operators discretized Schródinger operators, stochastic models and so on.

In the case of tridiagonal operators, we have the following result for a certain class of
operators. These operators, called almost Mathieu operators which are defined by

Ten = en−1 + λ cos(2nπα+ θ)en + en+1, α, λ, θ ∈ R.

The authors in [3] proved that if λ ∈ R and r is a rational multiple of π, then

Ten = en−1 + λ sin(2nr)en + en+1

is not invertible. However, when r is an irrational multiple of π, the problem of invertibility
still remains open.

If T is a general tridiagonal operator, the following result is proved in [4].

Theorem 2.1. Let T be the tridiagonal operator defined by

Ten = cn−1en−1 + dnen + un+1en+1

where {cn}, {dn} and {un} are bounded sequences of complex numbers. Suppose Tn is
invertible for all n and there exists a constant K such that 0 < K < ∞ and ∥T−1

n en∥ ≤ K
for all n. If the operator equation Tx = y has a solution (i.e. if y ∈ R(T ), the range of T ),
then this solution can be obtained as the limit of the solutions xn of the operator equation
Tnx

n = yn|Hn
in the norm topology. In other words, T−1

n (yn) → x. In particular, T is 1-1.

If, in addition cn ̸= 0, un ≠ 0 for all n and ∃ L > 0 such that ∥T ∗−1
n (en)∥ ≤ L for all n

then T is onto and hence invertible.

We indicate the outline of the proof for the sake of completeness. The tridiagonal nature
of T implies that Tn(xn) differs from T (xn) only in the last component, namely if y ∈ R(T )
x =

∑∞
i=1 αiei, and T (x) = y, then

< Tn(xn), en >= unαn−1 + dnαn

and

< T (x), en >= unαn−1 + dnαn + cnαn+1.

Thus Tn(xn) + αn+1cnen = yn which implies that T−1
n (yn) = xn + cnαn+1T

−1
n (en). As

n → 0, xn → x αn → 0 and {T−1
n (en)} is bounded, we see that T−1

n (yn) → x. This also
implies that T is 1-1 (by taking y = 0).

To prove that T is onto, take a y ∈ H. Then y =
∑∞

i=1 βiei, yn =
∑n

i=1 βiei. As Tn is
onto ∃ xn ∈ Hn such that Tnx

n = yn. Further

y = lim
n→∞

yn = lim
n→∞

Tn(x
n). (2.1)
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If we write

xn = αn
1 e1 + αn

2 e2 + · · ·+ αn
nen,

then one can show that

T (xn)− Tn(x
n) = αn

nun+1en+1 (2.2)

and αn
n =

∑n
i=1 βi < ei, (Tn)

∗−1

en >.

But making use of the fact that {T ∗−1
n en} is bounded, we prove that αn

nun+1 → 0 as
n → ∞. Similarly writing

xn+1 − xn = (βn+1 − αn
nun+1)T

−1
n+1(en+1)

and

T−1
n (en) = (−1)n+1(detTn)

−1[c1c2 · · · cn−1e1−c2 · · · cn−1(detT1)e2+· · ·+(−1)n−1detTn−1en

using the fact that {T−1
n en} is bounded, we can show that {xn} is a Cauchy sequence is H.

Let x = limn→∞ xn. Since αn
nun+1 → 0 as n → ∞, from (2.1) and (2.2), it follows that T is

onto. Complete proof is given in [4].

The following corollary gives a verifiable criterion for an infinite matrix to satisfy the
conditions in the above theorem

Corollary 2.2. With all notations as in Theorem 2.1 suppose the following condition hold:
There exists η0, η, η

′ such that η0 > 0, 0 ≤ η, η′ < 1 and

• (i) |dn| ≥ η0 for all n
• (ii) |dn||dn+1| ≥ 4|un+1||cn| for all n
• (iii) |dn||dn+1| ≥ 4

η |un+1||un| for all n
• (iv) |dn||dn+1| ≥ 4

η′ |cn||cn=1| for all n

Then each Tn is invertible and {∥T−1
n (en)∥}, {∥T ∗−1

n (en)∥} are both bounded sequences.
Hence the conclusions of Theorem 2.1 hold.

Proof. Detailed proof is given in [4].

Example 2.3 Let un = cn = 1 for all n are define dn by the following:

for n = 0, 1, · · ·

d2n+1 = 10− 1
n

d2n+2 = 5
d2n+1

It is easy to see that the condition in Corollary 2.2 are satisfied, by taking

η0 =
1

2
, η = η′ =

4

5

3. Algorithm
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In this section, we present an algorithm to compute the solution x = (α1, · · · ) when the
sequences {un}, {cn}, {dn}, {βn} are given and apply this algorithm to Example 2.3.

Before presenting the algorithm, let us build up the essential requirements. For conve-
nience, we assume that {un}, {cn}, {dn}, {βn} are all real. We have

∥T−1
n+1(en+1)∥2 =

1

(detTn+1)2
(c21...c

2
n + c22...c

2
ndetT

2
1 + ...+ c2ndetT

2
n−1 + detT 2

n)

= (detTn+1)
−2(c2ndetT

2
n∥T−1

n en∥2 + detT 2
n)

= detT 2
ndetT

−2
n+1(1 + c2n∥T−1

n en∥2).

Similarly,

∥T ∗−1

n+1en+1∥2 = detT 2
ndetT

−2
n+1(1 + u2

n+1∥T ∗−1

n en∥2).

Also, ∥T−1
1 e1∥2 = ∥T ∗−1

1 e1∥2 = d−2
1 . Further detTn satisfies the recurrence relation:

detTn = dndetTn−1 − uncn−1detTn−2 n ≥ 2

with detT0 = 1 and detT1 = d1. As proved in theorem 2.1, we also have

xn+1 − xn = (βn+1 − αn
nun+1)T

−1
n+1(en+1)

where xn = αn
1 e1 + αn

2 e2 + ...+ αn
nen. We write xn+1 = αn+1

1 e1 + αn+2
2 e2 + ...+ αn+1

n+1en+1

and express T−1
n+1(en+1) in terms of T−1

n (en). Then by equating the coefficients of en+1 in

xn+1 − xn, we get

αn+1
n+1 = (detTn)(detTn+1)

−1(βn+1 − αn
nun+1).

For the sake of convenience let us use the following notations. βn = bn, αn
n = an,

detTn = tn. ∥T−1
n en∥2 = rn, ∥T ∗−1

n en∥2 = sn.

Algorithm. Let M1,M2 denote very large numbers and ϵ > 0 a very small number.

Step 1. Fix n. Input d1, d2, ...dn, c1, c2, ...cn−1, u2, u3, ..un, b1, b2, ...bn. Define t0 = 1, t1 =
d1, r1 = 1

d2
1
, s1 = 1

d2
1
, a1 = b1

d1
, x1 = b1

d1
e1, T

−1
1 (e1) =

1
d1
e1. For i = 2, 3, ..., n we compute the

following.

Step 2. Let ti = di(ti−1)− uici−1ti−2. If ti = 0 for some i we stop further computation and
print ”algorithm will not appply as Ti is not invertible.” Otherwise we proceed to Step 3.

Step 3. Let ri = (1 + c2i−1ri−1)t
2
i−1/t

2
i . Again if ri > M1 for some i, then stop further

computations and print ”algo rithm will not apply as ri is large.” Otherwise we proceed to
Step 4.

Step 4. Let si = (1+ uis
2
i−1)t

2
i−1/t

2
i . If si > M2 for some i then stop further processing and

print ”algorithm will not apply as si value is large.” Otherwise proceed to Step 5.

Step 5. Let ai = (bi − ai−1ui)ti−1/ti T
−1
i (ei) = ti−1/ti{−ci−1T

−1
i−1(ei−1) + ei} xi = xi−1 +

(bi − ai−1ui)T
−1
i (ei).
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Step 6. Calculate the error err(n) = |an−1un| and the relative error rerr(n) = err(n)/∥x∥.
If rerr(n) < ϵ we stop and print xn and rerr(n). Otherwise repeat Step1 to Step 5 until
rerr(n) < ϵ.

We applied this algorithm to the operator in Example 2.3 and by taking the right hand
side bn = 1

n for all n. Results obtained (using MATLAB) are tabulated for the following
values of n.

Number of iterations n Relative error rerr(n)
20 0.02230
30 0.11160
40 0.00740
50 0.00520
100 0.00180
150 0.00009

After 150 iterations, the relative error becomes negligible.
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