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Classroom notes

Arzela–Ascoli theorem is stable

S. H. KULKARNI
Department of Mathematics, Indian Institute of Technology, Madras, Chennai-600036,

India. e-mail: shk@acer.iitm.ernet.in

(Received 25 March 1999)

A quantitative version of the Arzela–Ascoli theorem is proved. This version
implies that a closed and bounded subset of C…X† is nearly compact, if and only
if, it is nearly equicontinuous.

1. Introduction
We know that a process (a problem, an equation) is called stable if a small

change (perturbation) in its input leads to a small change in the output. This idea is
fairly common in the study of diVerential equations and many other operator
equations. Applying this concept of stability to a mathematical theorem, it is
natural to regard the hypotheses of the theorem as input and its conclusion as
output. The crucial aspect in such an application is to decide what is meant by a
small change. Jarosz [1] has given several illustrations of applying this idea to
various theorems about Banach algebras.

In this note we give an illustration of the application of this concept to a well-
known theorem in the undergraduate analysis, namely, the Arzela–Ascoli theorem.
The importance of the Arzela–Ascoli theorem lies in the fact that it gives a
characterization of compact subsets of C…X†. The importance of compactness in
analysis is best explained by the famous quote from the classic article [2] of Hewit.

A great many propositions in analysis are trivial for � nite sets, true and
reasonably simple for in� nite compact sets; and either false or extremely
diYcult to prove for noncompact sets.

Thus it is of tremendous importance to know what are the compact sets in a
concrete Banach space. Undoubtedly, the most popular characterization of com-
pact sets is given by the Heine–Borel theorem which says that a subset of the real
line is compact, if and only if, it is closed and bounded. In fact, this is true in every
� nite dimensional Banach space and is actually equivalent to � nite dimensionality.
Thus it is natural to ask: ‘What additional properties should a closed and bounded
set in an in� nite dimensional Banach space have in order to be compact? ’ The
Arzela–Ascoli theorem provides an answer to this question in the space C…X† and
the answer is: ‘equicontinuity ’ . In other words, a closed and boundeed subset K of
C…X† is compact, if and only if, K is equicontinuous.
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We want to show that this theorem is stable, that is, a small change in
the hypothesis of compactness produces only a small change in the property
of equicontinuity and vice versa. That brings us to the crucial question:
‘What is meant by a small change in compactness and a small change in
equicontinuity? ’

As far as compactness is concerned, this is already known. We recall this
de� nition of ‘a measure of non-compactness ’ , de� ne a similar ‘measure of non-
equicontinuity ’ and establish a relationship between the two.

2. Preliminaries
Let …X; d† be a metric space and M a subset of X. De� ne

®…M† :ˆ inf f° > 0 : M can be covered by a finite number of

open balls with radius °g

®…M† is called the (HausdorV ) measure of non-compactness [3, 4]. If M is bounded,
there exists k > 0 such that d…x; y† 4 k for all x; y 2 M. Obviously, ®…M† 4 k.
®…M† can be strictly less than k. If ®…M† ˆ 0, then for every ° > 0, M can be
covered by a � nite number of open balls with radius °. Such a set is called totally
bounded. [5] (Some authors prefer to call this relatively compact.) A subset of a
metric space is compact, if and only if, it is complete and totally bounded [5].
This is the motivation for the name measure of non-compactness. Perhaps more
appropriate (and more clumsy!) name would have been measure of non-totally-
boundedness! Note that in a � nite dimensional Banach space every bounded set is
totally bounded, hence ®…M† is either 0 or 1. On the other hand, if M is the unit
ball in an in� nite dimensional space, then 0 < ®…M† 4 2.

Next let X be a compact metric space and C…X† be the Banach space of all
complex-valued continuous functions de� ned on X equipped with the supremum
norm, de� ned by,

k f k :ˆ sup fj f …x†j : x 2 Xg for f 2 C…X†

Let A be a subset of C…X†. De� ne

¬…A† :ˆ inf f° > 0 : there exists ¯ > 0 such that d…x; y† < ¯ implies

j f …x† ¡ f … y†j < ° for all x; y 2 X and for all f 2 Ag

We shall call ¬…A†, the measure of non-equicontinuity. As in the case of ®, it is easy to
see that ¬…A† is � nite, whenever A is bounded. Further, ¬…A† ˆ 0, if and only if, for
all ° > 0, there exists ¯ > 0 such that d…x; y† < ¯ implies j f …x† ¡ f … y†j < ° for all
x; y 2 X and for all f 2 A. As is well known, such a family A of functions is called
an equicontinuous family of functions and this is the motivation for the term
measure of non-equicontinuity.

3. Main theorem

Theorem. Let X be a compact metric space and A » C…X† be bounded. Then,

(i) ¬…A† 4 2®…A†,
(ii) ®…A† 4 2¬…A†.
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Equivalently, 1
2 ¬…A† 4 ®…A† 4 2¬…A†.

Proof. Let ¬ :ˆ ¬…A† and ® :ˆ ®…A†, where ¬…A† is the measure of non-
equicontinuity of A and ®…A† is the measure of non-compactness of A as de� ned
above.

Let ° > 0. A can be covered by a � nite number of open balls with radius
® ‡ ° and centres at, say, f1; . . . ; fn. Since each fk is uniformly continuous,
there exists ¯k > 0 such that d…x; y† < ¯k implies j fk…x† ¡ fk… y†j < °. Let
¯ :ˆ min f¯k; k ˆ 1; . . . ; ng. Now let f 2 A. There exists fk such that
k f ¡ fkk < ® ‡ °. Then d…x; y† < ¯ implies

j f …x† ¡ f … y†j 4 j f …x† ¡ fk…x†j ‡ j fk…x† ¡ fk… y†j ‡ j fk… y† ¡ f… y†j

< ® ‡ ° ‡ ° ‡ ® ‡ ° ˆ 2® ‡ 3°

Thus ¬ 4 2® ‡ 3°. Since ° was arbitrary, ¬ 4 2®. This proves (i).
To prove (ii), again let ° > 0. There exists ¯ > 0 such that d…x; y† < ¯

implies j f …x† ¡ f… y†j < ¬ ‡ ° for all x; y 2 X and for all f 2 A. Let
Vx :ˆ f y 2 X : d…x; y† < ¯g. Then y 2 Vx implies j f …x† ¡ f … y†j < ¬ ‡ ° for all
f 2 A. X, being compact, is covered by a � nite number of such sets, say,
Vx1 ; . . . ; Vxm . Consider the set N :ˆ f… f …x1†; . . . ; f …xm†† : f 2 Ag ³ Cm. Since A is
bounded in C…X†, N is bounded in Cm and is hence totally bounded in k:k1 norm.
Hence N is covered by a � nite number of open balls with radius ° and centres at,
say, f… f1…x1†; . . . ; f1…xm††; . . . ; … fk…x1†; . . . ; fk…xm††g. Now let f 2 A. Then there
exists fi such that j f…xj† ¡ fi…xj†j < ° for j ˆ 1; . . . ; m. Let x 2 X. Then x 2 Vxp

for some p. Now

j f…x† ¡ fi…x†j 4 j f…x† ¡ f …xp†j ‡ j f…xp† ¡ fi…xp†j ‡ j fi…xp† ¡ fi…x†j

< ¬ ‡ ° ‡ ° ‡ ¬ ‡ ° ˆ 2¬ ‡ 3°

that is, k f ¡ fik < 2¬ ‡ 3°. Thus A is covered by k open balls with radius 2¬ ‡ 3°.
Hence ® 4 2¬ ‡ 3°. Since ° was arbitrary, we have ® 4 2¬. &

Corollary …Arzela–Ascoli theorem†. Let A be a closed and bounded subset of
C…X†. Then A is compact, if and only if, A is equicontinuous.

Proof. Since A is closed, it is complete. Hence A is compact, if and only if, it is
totally bounded, if and only if, ®…A† ˆ 0, if and only if, ¬…A† ˆ 0, if and only if, A
is equicontinuous. &

Remark. Interested readers may investigate whether characterizations of
compactness in other in� nite dimensional Banach spaces as given in Table IV
pp. 374–379 of [6] are stable in our sense. See also [7].
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In this note the convergence behaviour of both Newton’ s and Halley ’ s
methods for a general quadratic function in the complex plane is investigated. It
is concluded that both methods exhibit similar convergence behaviour in this
case.

1. Introduction
Newton’ s method and Halley’ s method are two of the most classical iterative

methods for � nding the approximation for a zero of a real or complex function ([1–
5] and references therein). Both Newton ’ s method and Halley ’ s method converge
if the initial guess is close enough to the target zero of the function. If the target
zero is a simple zero of the function, then the convergence rate for Newton ’ s
method is quadratic, while it is cubic for Halley’ s method. But, when the initial
guess is not close enough to the target zero, both Newton ’ s and Halley ’ s methods
often diverge and even go into chaotic behaviour, especially in the complex plane
case. In this note, we investigate the convergence behaviour of both Newton ’ s and
Halley ’ s methods for a general quadratic function in the complex plane such as

f…z† ˆ c…z ¡ c1†…z ¡ c2† …1†

where c is the complex leading coeYcient of f …z† with two complex zeros c1 and c2.
We show that both Newton ’ s and Halley’ s methods have similar convergence
behaviour for f …z† in equation (1). And the corresponding behaviours exhibit
quadratic convergence rate for Newton ’ s method and cubic convergence rate for
Halley ’ s method if c1 6ˆ c2. When f…z† has a double zero, that is, when c1 ˆ c2, then
the corresponding convergence behaviours indicate that both Newton ’ s and
Halley ’ s methods converge linearly.

2. Convergence of Newton’ s method
The iteration formula for Newton ’ s method is given by
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