NON-INVERTIBILITY OF CERTAIN ALMOST MATHIEU OPERATORS

R. BALASUBRAMANIAN, S. H. KULKARNI, AND R. RADHA
(Communicated by Joseph A. Ball)

Abstract

It is shown that the almost Mathieu operators of the type $T e_{n}=$ $e_{n-1}+\lambda \sin (2 n r) e_{n}+e_{n+1}$ where λ is real and r is a rational multiple of π and $\left\{e_{n}: n=1,2,3, \ldots\right\}$, an orthonormal basis for a Hilbert space, is not invertible.

Let H be a Hilbert space with an orthonormal basis $\left\{e_{n}: n=1,2,3, \ldots\right\}$. An important class of tridiagonal operators used in mathematical physics are almost Mathieu operators which are defined by

$$
T e_{n}=e_{n-1}+\lambda \cos (2 n \pi \alpha+\theta) e_{n}+e_{n+1}
$$

α, λ, θ are real. Certain questions regarding the Lebesgue measure of the spectra of such operators seem to have received a good deal of attention in the literaure. (See [1], [2], [4].) However, the question of invertibility of such operators seems to be unexplored. In this note we prove that the almost Mathieu operators of the type

$$
T e_{n}=e_{n-1}+\lambda \sin (2 n r) e_{n}+e_{n+1}
$$

λ real, r a rational multiple of π are not invertible. Since every separable Hilbert space is isometrically isomorphic to ℓ^{2}, the main theorem is proved for operators on ℓ^{2}.

Theorem 0.1. Let V be an infinite tridiagonal matrix whose diagonal elements are $d_{1}, d_{2}, \ldots d_{m}, 0,-d_{m}, \ldots,-d_{1}, 0$ repeated in the same order and off diagonal entries are 1. Then V defines a bounded linear operator on ℓ^{2} and V is not invertible.

Proof. That V defines a bounded linear operator on ℓ^{2} is straightforward. To show that V is not invertible, we prove that V is not onto. In particular we aim to show that e_{1} is not in the range of V. Let $x=\left(\alpha_{1}, \alpha_{2}, \ldots\right) \in \ell^{2}$ such that $V x=(1,0,0, \ldots)$. Then $\alpha_{1} d_{1}+\alpha_{2}=1$ and

$$
\alpha_{n-1}+\alpha_{n} \lambda_{n}+\alpha_{n+1}=0, \quad n=1,2,3, \ldots
$$

where λ_{n} are the diagonal elements of the matrix, viz. $d_{1}, d_{2}, \ldots, d_{m}, 0,-d_{m}, \ldots$, $-d_{1}, 0$. We first consider a block of $2 m+3$ equations for $n=m+1$ to $3 m+3$. For $n=2 m+2, \lambda_{n}=0$, we have $\alpha_{2 m+3}=-\alpha_{2 m+1}$. Next we consider the two

[^0]equations adjacent to the above for $n=2 m+1$ (with $\lambda_{n}=-d_{1}$) and $n=2 m+3$ (with $\lambda_{n}=d_{1}$)
\[

$$
\begin{gathered}
\alpha_{2 m}-d_{1} \alpha_{2 m+1}+\alpha_{2 m+2}=0 \\
\alpha_{2 m+2}+d_{1} \alpha_{2 m+3}+\alpha_{2 m+4}=0
\end{gathered}
$$
\]

This yields (using $\alpha_{2 m+1}=-\alpha_{2 m+3}$) $\alpha_{2 m+4}=\alpha_{2 m}$. Proceeding in this way we can prove by induction $\alpha_{2 m+2+k}=(-1)^{k} \alpha_{2 m+2-k}$ for $k=0,1,2, \ldots, m+1$. In particular $\alpha_{3 m+3}=(-1)^{m+1} \alpha_{m+1}$ and $\alpha_{3 m+2}=(-1)^{m} \alpha_{m+2}$. Now, the next block of $2 m+3$ equations for $n=3 m+3$ to $5 m+5$ is exactly same as the previous block. Hence as above, $\alpha_{5 m+5}=(-1)^{m+1} \alpha_{3 m+3}=\alpha_{m+1}$. Thus $\alpha_{n}= \pm \alpha_{m+1}$ for $n=m+1,3 m+3,5 m+5, \ldots$. Since $x \in \ell^{2}$, we have $\alpha_{m+1}=0$. Similarly $\alpha_{m+2}=0$. However, then $x=0$ and so $V x=e_{1}$ is impossible.

Now we consider a separable Hilbert sapce H with an orthonormal basis $\left\{e_{n}\right.$: $n=1,2,3, \ldots\}$ and the almost Mathieu operator of the type

$$
T e_{n}=e_{n-1}+\lambda \sin (2 n r) e_{n}+e_{n+1}
$$

where λ is real, r is rational multiple of π say $\frac{p \pi}{q}$. Then using the properties of the sine function, we see that T is a matrix of the type defined in Theorem 0.1 with a suitable choice of m. Thus we conclude the following result.

Corollary 0.2. Let $T e_{n}=e_{n-1}+\lambda \sin (2 n r) e_{n}+e_{n+1}, \lambda$ real and r a rational multiple of π. Then T is not invertible.

Acknowledgement

The authors thank the refereee for several useful suggestions towards improving the presentation of this paper and in particular for suggesting an idea which led to a considerable simplification of the proof of Theorem 0.1.

References

1. J.Avron, P.H.M.V.Mouche and B.Simon, On the measure of the spectrum for the almost Mathieu equation, Com.Math. Phys. (132) 1990, 103-118. MR 92d:39014a
2. J.Bellisard, R.Lima and D.Testand, Cantor spectrum for the almost Mathieu equation, J.Funct. Anal. (48) 1982, 408-419. MR 84h:81019
3. S.Jitomirskaya and Y. Last, Anderson Localization, continuity of gaps and measure of the spectrum, Comm. Math. Phys. (195) 1998, 1-14. MR 99j:81038
4. Y.Last, Almost everything about the almost Mathieu operator, Proceedings of XI international congress of Math. Physics, Paris, 1994, Intl. Press (1995), 366-372. MR 96m:82034
5. Y.Last, Zero measure spectrum for the almoist Mathieu operator, Comm. Math. Phys. (164) 1994, 421-432. MR 95f:47096

The Institute of Mathematical Sciences, C.I.T. Campus, Madras-600 113, India
E-mail address: balu@imsc.ernet.in
Department of Mathematics, Indian Institute of Technology, Madras-600 036, India
E-mail address: shk@acer.iitm.ernet.in
Department of Mathematics, Anna University, Madras-600 025, India
E-mail address: radharam@annauniv.edu
E-mail address: radharam@imsc.ernet.in

[^0]: Received by the editors June 18, 1999 and, in revised form, November 5, 1999.
 2000 Mathematics Subject Classification. Primary 47B37; Secondary 15A15.
 Key words and phrases. Almost Mathieu operator, determinant, tridiagonal matrix, tridiagonal operator.

