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AN ANALOGUE OF THE RIESZ-REPRESENTATION
THEOREM

Sushama Agrawal!, S.H. Kulkarni!

Abstract. We prove the following analogue of the Riesz-Representation
theorem for the space of quaternion-valued continuous functions on a com-
pact Hausdorff space:

Let X be a compact Hausdorff space and ¥ : C(X,H) — H be
a bounded linear functional on a left quaternion normed linear space
C(X,H), then there exists a unique quaternion valued regular Borel mea-
sure A on the g-algebra of all Borel subsets of X such that

¢'(f)=/ fdX, forall feC(X H)
X

and ||#]] = |A)(X), || is the total variation of A.

Some basic results (needed in the proof of the main theorem) from
the theory of quaternion measures are also proved. These include an ana-
logue of Lusin’s theorem and an analogue of the Radon-Nikodym theorem.
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1. Introduction

In this paper we give a characterization of bounded quaternion linear func-
tionals on C(X,H), the space of all quaternion-valued continuous functions on
a compact Hausdorff space X. This can be considered as an analogue of the
classical Riesz-Representation Theorem (Theorem 4.1).

Our proof of this main theorem requires certain basic results from two as-
pects of measure theory. Since these results had not been available in the
literature, we had to prove these afresh. The first is the theory of integra-
tion of quaternion-valued functions with respect to a positive measure. This
is developed in the next section. This section also contains an analogue of
Lusin’s theorem (Theorem 2.3) which deals with the problem of approximat-
ing quaternion-valued measurable functions by continuous functions. The third
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section deals with another aspect, namely the basic theory of quaternion-valued
measures. We prove an analogue of the Radon-Nikodym theorem (Theorem
3.1) in this section. Section 4 contains a proof of the main theorem and the
consequent characterization of the dual space of C'(X,H). For more results on
quaternion normed linear spaces refer [1, 5, 7, 8, 9] and the references there in.

2. Integration of quaternion-valued function with respect
to a positive measure

We denote the sets of real and complex numbers by R and C, respectively,
and that of quaternions by HI.

Let 1, 7, j and k denote the usual quaternion members of a basis of H. Thus
any ¢ € H has a unique representation as ¢ = qo + q17 + g2 + g3k with qo,q1, ¢2
and ¢z € R. Also, ¢ = z; + 235 where z1 = qo + q1%, 23 = g2 + q3i € C.

For ¢ € H, the conjugation is defined by ¢* = q¢o — 17 — g27 — qak. qo is called
the real part of g, it is denoted by Re ¢ and we have ¢ = Re ¢ — i Re ig —
j Re jg—k Re kq. Also for p,q € H, Re pg = Re ¢p.

H is a normed algebra with the norm defined by |¢| = (¢"¢)'/2. Also, the
norm satisfies, as in the complex case, |pg| = |p|ig| for all p, ¢ € H. Elementary
properties of quaternions can be found in any book on modern algebra (e.g. [2]).

We recall that a left (respectively right) quaternion normed linear space X
is a real normed linear space which is also a left (respectively right) module on
H and the norm satisfies ||az|| = |a| ||z]|| (respectively |lza|| = |jz|| |a]) for all
¢ € X, a € H. A quaternion linear functional on a left (right) quaternion
normed linear space X is a map ¢ : X — H satisfying

d(az + Py) = ag(z) + Pé(y) (respectively ¢(za + yf) = ¢(z)a + ¢(y)0)
forallz,y€ X,a,5 € H.

¢ is said to be a real linear functional, if the above holds only for «, § € R.

Similarly, the two-sided quaternion normed linear space and linear function-
als on such spaces are defined. In this paper we will deal with the left quaternion
normed linear spaces only. The results for the right and two-sided quaternion
normed linear spaces can be obtained analogously. Torgasev in [7, 8] considered
two-sided quaternion normed linear spaces.

Let Xg denote, X regarded as a real normed linear space. Note that the
elements of X and Xy are the same.

The following Lemma gives a relationship between the quaternion linear
functionals and real linear functionals on a quaternion normed linear space. The
proof of this lemma is very similar to the method of obtaining linear functionals
on a complex normed linear space in terms of real linear functionals on the
underlying real normed linear space Xg (See [6]).
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Lemma 2.1. Let X be a (left) quaternion normed linear space. If ¢ is a quater-
nion linear functional on X, then Re ¥ : Xg — R defined by

(Re ¥)(f) = Re (¥(f)), f € Xr,

is a real linear functional on Xg and ([¢|| = [[Re ¥||. Moreover, for all f € X,

¥(f) =Re ¥(f) —iRe ¥(if) —jRe ¥(jf) ~kRe ¥(kf)

Conversely, if ¢ is a real linear functional on Xgr and let

¥(f) = ¢(f) —16(if) — j6(if) — ko(kf) for all f € X,
then v is a quaternion linear functional on. X, Re ¥ = ¢ and ||¥|| = ||4||-

We need few facts from the theory of integration of quaternion-valued func-
tions with respect to a positive measure. This theory is almost similar to the
theory of integration of complex valued measurable functions [3, 4]. Let (X, M)
be a measurable space and g a positive measure on (X, M). A quaternion-valued

measurable function f on (X, M) is said to be integrable if/ |fldp < co. 1t is

easy to check that f = fo+ifi +jfa+kfs =g+ hjis int.e}g(rable if and only
if the real functions fo, f1, f2 and f3 are integrable or, equivalently, if and only
if the complex functions g = fo + ¢f; and h = fz + ifs are integrable. For an
integrable f we define

/deliZ/Xfodll'*-i/xfldﬂ‘*'j/xf2du+k/xfadu-

Thus, for an integrable f,/ fdpeH

X
It can be easily shown that the integral defined in this way has the following
properties:
Let f, g be quaternion-valued integrable functions on X and p,q € H. Then

L[ o= [ saus [ g
2 [ praan=p([ 1an)q

3. |/X fdu'.s/x 1F1 du
(L) - o
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For 1 < p < oo, we define LF (1) as the space of all equivalence classes of
quaternion-valued measurable functions f on X for which |f|? is integrable. It
is easy to prove that if f = g + hj, where g and h are complex functions, then
f € Lg(p) if and only if g, h € LE(p), the complex L (u). L (p) is left (also

right, two—sidflzdd) quaternion normed linear space with the p — norm ||f||, =

r
( / ¥l d/l) . LE (1) denotes the space of all equivalence classes of essentially
X

bounded quaternion-valued measurable functions on a measure space with the
essential supremum norm.

The proof of the following results follow on the similar lines of their complex
versions ([4] p.24).

Theorem 2.2. Let p be a positive measure on X.

a) ( Lebesgue’s Dominated Convergence Theorem ) Suppose {fn} is a se-
quence of quaternion-valued measurable functions on X such that

exists for every ¢ € X. If there is an integrable function g such that
[fa(z)] < g(z) (n=1,2,3,..;2 € X),

then f € Ly(p), and

n—00

lim [ fa d/l:/fd/z.
X X

b) Suppose f € Ly(u), and/ fdu=0 foradl E€M. Then f =0 a.e. on
E
X.

c¢) Suppose pu(X) < oo, f € L(u), S is a closed set in H and the averages
L f dp lie in S for every E € M, with u(E) > 0, then f(z) € S for
WET

almost all z.

Let X be a compact Hausdorff space. We denote the set of all F — Valued
continuous functions on X, by C(X,F) where F =R or Cor H. For F =R or C,
C(X,T) is a normed linear space over IF, with the supremum norm. C(X,H) is a
left (also right, two-sidedd) quaternion normed linear space with the supremum
norm.

We prove the following analogue of Lusin’s theorem which can be used to ap-
proximate a quaternion-valued measurable function by a continuous quaternion-
valued function. This will be used in proving an analogue of the Riesz-Repre-
sentation Theorem in Section 4.
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Theorem 2.3. [(Analogue of Lusin’s theorem)] Suppose f is a quaternion-
valued measurable function on a compact Hausdorff space X, p is a positive
regular Borel measure on X, u(X) < oo and € > 0. Then there exists a g €
C(X,H) such that

pl{z e X : fz) #9(z)}) <e
Further, it is possible to choose g in such a way that
sup{|g(z)]: z € X} < ess. sup|f].

Proof. f can be written as f = fi + f2j, for some complex measurable functions
fi and f2. As p(X) < oo, applying Lusin’s Theorem ([4], p. 55) to the complex
functions f and f, there exist hq, hy € C(X, C) such that the sets

Ay ={z € X: fi(z) # h(z)},
Ay ={z € X : fa(x) # ha(z)}

satisfy pu(A1) < €/2 and p(Az) < €/2. Let A = A;]J Az then u(A4) < € and for
allz € X\ 4, fi(z) = h1(z) and fa(z) = ha(z).
Let h = hy + hyj then h € C(X,H), f =hon X \ A and

{z € X : f(z) # h(z)} C A.

This proves the first part.
Now, let

r = ess. sup|f|,

and define p(q) = ¢ if |¢| < r and »(g) = rq/ig| if |g) > r. Then p is a
continuous mapping of H onto the closed disc in H of radius 7. Let g = ¢ o h.
Then sup{|g(z)|: z € X} <r =ess. sup|f] and

{r € X : g(s) # f(2)} C {2 € X : h(2) £ F(2)} U{z € X : 1f()] > r)
thus
p{z € X 1 g(2) £ f(x)} <easpl{z e X :|f(z)| >r} =0 u

Corollary 2.4. Let X and p be as in Theorem 2.3 and f be a quaternion-

valued measurable function on X such that ess. sup|f| < 1. Then there ezist

{gn} € C(X,H) such that ||gn|| < 1, lim gn(2) = f(z) for almost all z; that is
n o0

gn — [ almost everywhere.
Proof. By the Theorem 2.3 to each n, there exists g, € C(X,H) such that

lgn|l < ess. sup|f| <1
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and p(E,) < 27", where E, is the set of all z at whcih f(z) # gn(z). Now,
since

Z,u(En) S 1< o,

n=1

almost every z lie only in finitely many of the sets E, ([4] p.31). Thus flz) =
gn(z) for all large enough n, for almost all z. That is limit g,(z) = f(z) for
almost all z. Thus g,, — f almost everywhere. O

3. Quaternion measures

Let M be a o — algebra in a set X. Call a countable collection {E;} of
members of M a partition of E if E; (| E; = ¢ whenever i # j, and E = | E;.
A gquaternion measure A on M is a quaternion-valued function on M such that

=Y _A(E)

i=1

for every partition {E;} of E.

If A is a quaternion measure on M, then A can be written as A = A\g + Ay7 +
Aaj + Ask, Ao, A1, Az and A3 are real-valued set functions on M. It is easy to see
that A is a quaternion measure on M, if and only if g, A;, A3 and A3 are real
measures on M. Also, if we write v; = Ag+ A1, 3 = Az +Agithen A = vy +u1pj,
and it is easy to see that A is a quaternion measure if and only if v; and vy are
complex measures on M.

Define a set function | A | on M by

I\(B) = supz I\E:

where the supremum is taken over all partitions {E;} of E.

We call the set function |A| the total variation of A. Like complex measures, it
can be proved that the total variation |A| of a quaternion measure A is a positive
measure on M. Also, since the total varition of a complex measure is a finite
measure, for every partition {E;} of E, we have

o0 o0

> IAE I—Zlm ) + v2(E Z 1(E)| 4 [2(Ei)l < [nl(E) + [v2l(E).

Now by taking the supremum of the left hand side over all partitions of E, we

have
AI(E) < [n1l(E) + wal(E) < oo, for all B € M.

Thus, the total varition |A] of a quaternion measure A is a finite positive measure.
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A quaternion measure A defined on the o — algebra of all Borel subsets of a
topological space X is said to be regular if and only if the total variation |A] is
regular.

Let p be a positive measure on a o-algebra M, and let A be an arbitrary
measure on M; A may be positive or a quaternion measure. We say that A is
absolutely continuous with respect to p, and write A € p if A(E) = 0 for every
E € M for which u(F) = 0.

The following theorem is an analogue of the Radon-Nikodym Theorem [4].

Theorem 3.1. (Analogue of the Radon-Nikodym Theorem) Let u be a positive
o — finite measure and A a quaternion measure on M such that A < u, then
there exists a unique h € L(u) such that

(1) AE) = /E h dy, for all E € M.

Proof. A can be written as A = A\ + Ay, where A1 and Az are complex measures.
Since A & p, whenever y(E) = 0, we have A(E) = 0, which implies that
A(E) = 0, and Ay(E) = 0, hence Ay € g, and A3 <« p. By the Radon-
Nikodym theorem for complex measures, there exist &1 and hy € L{(x) such

that A1 (E) :/ hy dy and Ay(E) = / hy dy for all E € M. If h = hy + haj
E E
then

[ e < [ (hal+ phade < o
bs b
as hy and hy € LE(y). Thus h € Ly(p) and

/\(E):/\I(E)+/\2(E)j:/E h dp.

Further, if h, g € L} (p) satisfy equation (3.1) then
/ (h—g)du=0, forall E€M,
E

hence by Theorem 2.2(b), A = g almost everywhere. This proves the uniqueness
of h. a

Corollary 3.2. Let A be a quaternion measure on a o-algebra M in X . Then,
there is a quaternion-valued measurable function h on X such that |h(z)] = 1
for all z € X, and such that A(E) = [ hd|}|, for all E € M. In other words
d\ = hd|)| .

Proof. Clearly A « {)\|. Since || is finite, by Theorem 3.1, there exists
h € Li(|A]) such that

) \(E) :/E hdAl, E€M.
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To prove |h(z)| = 1 for all z € X. Let A, = {z: |h(z)| < r} where r is some
positive number, and let {E;} be a partition of A,. Then

SEN <Y [ dA < r Y INE) = A (4.

Taking the supremum of the left side over all partitions of A, we get [A|(4,) <
r|Al(4y).
If r < 1 the above inquality implies that |A\](4,.) = 0. Thus 2] > 1 almost
everywhere.
On the other hand, if £ € M is such that |[A\|[(E) > 0, then from equation

(2) we have IW/ h dl)\l’ = N(ZE)‘} < 1. Thus the averages / h dix

lie in the closed unit disc of H. By Theorem of averages (Theorem 2.2(c)) the
range of h is contained in the closed unit disc of H almost everywhere, that is
|h] < 1 almost everywhere. Thus || = 1 almost everywhere.

Let B = {x € X : |h(z)| #1}. Then |A|(B) = 0. If we redefine h on B by
h(z) = 1, z € B we obtain a function h with the desired properties. m]

4. Analogue of the Riesz-Representation theorem

Let X be a compact Hausdorff space. In this section we give a characteriza-
tion of the bounded quaternion linear functionals on the left quaternion normed
linear space C'(X, H).

Let A be a quaternion-valued Borel measure on X. By Corollary 3.2, there
is a quaternion-valued measurable function h on X such that |A(2)| = 1 for all
z € X and ’

= / hd|A|, for every Borel set E.
By comparing the coeﬁiciellfts, we have

() = /E hodAl, n=0,1,2,3,
where A = g + A7 + A27 + Ask and h = ho + hyi + hoj + hsk.
Therefore d\,, = hpd|A|, n =0,1,2,3.

We now define ani  ‘ral of a quaternion-valued bounded measurable func-
tion f with respect to aternion measure A by

/fd)\ :=/fhd|)\[.
) E E
Equivalently

/Efd,\=/thd|,\| =/thod|,\|+/th1d|,\|.i+/th2d|,\|-j+/th3d|,\|-k

=/Efd>\o Lfdxl-i+/lgfdx2-j+[gfdxa-k
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If X is a quaternion-valued regular Borel measure on X then it is easy to see
that, the map v, : C(X,H) — H defined by

Ga(f) = /X fdx = /X fhdN, feC(X,H)

is a quaternion linear functional on the left quaternion normed linear space
C(X,H). Further, ¢ is bounded since, |, (f)] = / Fh djA] } < IF]l 1A(X).
X

Here h € L ([)]) is as in Corollary 3.2.
If C(X,H) is regarded as a right quaternion normed linear space then 1 :

C(X,H) — H defined by ¥, (f) :/ d\ f, forall f e C(X,H) is a bounded
(right) quaternion linear functional on the right quaternion normed linear space
C(X, H).

The following analogue of the Riesz-Representation Theorem shows that all the
bounded quaternion linear functionals on C'(X, H) are of this form.

Theorem 4.1. (Analogue of Riesz-Representation Theorem) Let X be a com-
pact Hausdorff space and ¢ : C(X,H) — H be a bounded linear functional on
the (left) quaternion normed linear space C(X,H). Then there exists a unique
quaternion-valued regular Borel measure A on X such that

3) ¥(f) =/X fd\  forall feC(X,H)

and ||¢]| = |A|(X)

Proof. First we shall prove the existence of A.
Regard C(X,H) as a real vector space and let ¢ : C(X,H) — R be defined by

¢(f) =Re ¥(f), [fe€C(X H)

By Lemma 2.1, ¢ is a bounded real linear functional. Define ¢¢ : C(X,R) = R
by ¢o(f) = #(f), f € C(X,R). Then ¢¢ is a bounded real linear functional
on C(X,R), ||#o]| < [|¢]]- By the Riesz-Representation theorem for the space
C(X,R) [4], there exists a real regular Borel measure Ag on the o-algebra of all
Borel subsets of X such that

$o(f) =/ fdx foradll f€C(X,R).
X
Similarly, ¢1(f) = é(if), ¢2(f) = 8(if), ¢a(f) = é(kf), f € C(X,R), are

bounded real linear functionals on C(X,R) and hence, as above, there exist a
real regular Borel measures Aj, A3 and A3 on X such that

1(f) = /X f dhn, da(f) = /X £ dhg, ds(f) = /X f dXs, for all f € C(X,R).
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Now, let f = fo+ifi 4+ jfo+kfs € C(X,H). Then fo, fi1, f2, f3 € C(X, R) and
Re ¥(f) =¢(fo+ifi+jifa+kfs)=o(fo) +¢(if1) + é(if2) + ¢(kf3)

/fod/\0+/ fld/\1+/ fgd)\2+/ fa dAs.

Y(f) =o(f) —id(if) —3 é(if) —k ¢(kf)
=¢(fo+ifi+ifatkfs)—id(ifo— fi+kfa—jfs)
—Jo(ifo—kfi—fatifs)—k ¢(kfo+ifi—ifs— f3)

/fod)\0+/ fld/\1+/ fgd/\2+/ fadAs
—i[—/X fi d/\0+/X fod/\l—/x fgd/\2+/x f2 dAg]
—/X fgd/\o+/x f3dz\1+/x fod/\z—/x f1 dA3)
—/X fgd/\o—/x fzd/\1+/x fld/\2+/x fo dXs3]

(fo+ifs + i fo + kfs)ddo + /X (Fo—ifo— ifs + kfa)dAs

Now, by Lemma 2.1,

X

+ [ (o +ifs = ifo - kf)dAe + / (Fs—ifa + if1 — kfo)dAa
X X

:/X fd,\0+/X f- —id,\1+/Xf~—jd/\2+/Xf-—kd/\3

= / f dX where X = Ao — 1A} — jA; — kA3 is a quaternion-valued Borel

meas}ilre on X. Also, since Ag, A1,z and A3 are regular Borel measures, A is
regular. This proves the existence of A. Now, by Corollary 3.2 there exists
h € Li(|A]) such that |h(z)| = 1 for all z € X and dX = hd|A|. Thus, for all
feC(X,H)

f>|=|/x‘f dA|=|/X fh dIAIIS/XIfI dIA < 171l IM(X)-

Thus |[#|| < [A|(X). Further, since [A|(X) < oo, by Corollary 2.4 there exists
{9} € C(X,H) such that g, — h almost everywhere and

llgn|] < ess. sup|h| =1, n=1,2,3....

Now, gnh — hh = 1 almost everywhere and |A[(X) < oo, therefore, by the
dominated convergence theorem (Theorem 2.2 (a))

(gn) = /X gn dX = /X gnh d|N] > /X diA] = A(X).
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Therefore [|3]| = |A|(X).

Now to prove the Uniqueness of the measure A, suppose A; and A3 are quaternion-
valued regular Borel measures satisfying (3). Then A = A; — A; is a quaternion-
valued regular Borel measure which satisfies,

/ fdrx=0, for dll f € C(X,H).
X

Now by Corollary 3.2 there exists A € Li(|A]) such that |h(z)]=1forallz € X
and d) = hd|)A|. Let € > 0. By Theorem 2.3, there exists g € C(X,H) such that
llgll < sup{|h(z)| : 2 € X} =1 and |A|(E) < € where E := {z € X : g(z) #

h(z)}. Since 0 = / g dx :/ gh d))|, we have |A|(X) = / (h — g)hd|)| <
X X - X

|h—g| d|\| = / |h—g| d|A| < 2|A|(E) < 2e. Since € was arbitrary, [A|[(X) = 0.
X E
Thus A = 0, hence Ay = ;. ]

Remark 4.2 Let X be a compact Hausdorff space and let M (X,H) denote the
set of all quaternion-valued regular Borel measures A on X. Then, M (X, H) is
a left (also right, two-sided) quaternion vector space. For A € M (X H), define
[IAll = [A(X). This defines'a norm on M(X,H) making it a Banach space.
Let v be a bounded quaternion linear functional on the left quaternion normed
linear space C(X, H) and F(y) = A, where A € M(X,H) is as given by Theorem
4.1.

Note that F{i1+3) = F(11)+ F(t2). However, in general {due to the non-
commutativity of quaternions) for ¢ € H, ¢1 is not a quaternion linear functional
on the left quaternion normed linear space C(X,H). On the other hand, g
defined by ¥q(f) = ¥(f)q, ¢ € H, is a quaternion linear functional on C'(X, H),
and we have F(yq) = F(i)q. Thus, the dual space of the left quaternion
normed linear space C(X,H) is a right module over H and by Theorem 4.1,
F is a quaternion linear isometry of the dual space of C(X,H) onto M (X, H),
when both are regarded as right quaternion Banach spaces, and hence right
quaternion Banach space M{X,H) can be identified with the dual space of the
left quaternion normed linear space C{X, H).

Similarly, the analogue of Theorem 4.1 for the right quaternion normed
linear space C'(X,H) and the characterization of the dual space of the right
quaternion normed linear space C'{X,H) with the left quaternion normed linear
space M (X,H) can be obtained.
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