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Abstract
In order to understand the behaviour of a square matrix or a bounded linear operator

on a Banach space or more generally an element of a Banach algebra, some subsets

of the complex plane are associated with such an object. Most popular among these

sets is the spectrum rðaÞ of an element a in a complex unital Banach algebra A with

unit 1 defined as follows:

rðaÞ :¼ fk 2 C : k� a is not invertible in Ag:

Here and also in what follows, we identify k:1 with k. Also quite popular is

Numerical range V(a) of a. This is defined as follows:

VðaÞ :¼ f/ðaÞ : / is a continuous linear functional on A satisfying

k/k ¼ 1 ¼ /ð1Þg:

Then there are many generalizations, modifications, approximations etc. of the

spectrum. Let �[ 0 and n a nonnegative integer. These include �� condition

spectrum r�ðaÞ, ��pseudospectrum K�ðaÞ and ðn; �Þ�pseudospectrum Kn;�ðaÞ.
These are defined as follows:

r�ðaÞ :¼ k 2 C : kk� akkðk� aÞ�1k� 1

�

� �

In this and the following definitions we follow the convention : kðk� aÞ�1k ¼ 1 if

k� a is not invertible.

K�ðaÞ :¼ k 2 C : kðk� aÞ�1k� 1

�

� �

Kn;�ðaÞ :¼ k 2 C : kðk� aÞ�2nk1=2
n

� 1

�

� �
:

In this survey article, we shall review some basic properties of these sets, relations

among these sets and also discuss the effects of perturbations on these sets and the
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question of determining the properties of the element a from the knowledge of these

sets.

Keywords Completeness � Invertibility � Transpose � Bounded below � Spectrum

Mathematics Subject Classification 46B99 � 47A05

1 Introduction

Problems about linear systems of equations formulated as operator equations,

approximate solutions of such equations, the eigen-value problems are some of the

important problems of Linear Algebra. In many practical situations it becomes

essential to pose these problems in an infinite dimensional setting. Functional

Analysis plays a vital role in analysis of such problems. In recent years, it has been

observed by some researchers such as Arveson, Bottcher and others that methods

involving Banach algebra techniques can be quite useful in dealing with such

problems. For example, see the classical books [4, 5]. In particular, methods of

approximating an infinite dimensional problem by a sequence of finite dimensional

problems, such as a finite section method, work very well in case of certain

operators and fail dramatically in case of certain other operators. It was pointed out

by Arveson [1] that a success or failure of such a method depends on whether the

operator under consideration belongs to a particular Banach algebra. It also turns out

that many problems in Analysis, Operator theory and Numerical Analysis are

equivalent to the problem of determining whether a particular element in a suitably

chosen Banach algebra is invertible or not (see [10]). For example, whether a given

bounded linear operator on a Banach space is a Fredholm operator or not is

equivalent to whether the corresponding element in a quotient algebra (known as

Calkin algebra) is invertible or not. Similar equvivalence can be established

between the problem of determining whether some approximation method works or

not and the problem of determining the invertiblity of an associated element in a

Banach algebra.

Closely related to the problem of invertiblity of an element of a Banach algebra is

the concept of spectrum. The spectrum is a very useful concept in several

applications. In concrete cases, it has well known interpretations such as spectrum

of a square matrix or spectrum of an operator. Thus computation of the spectrum of

an element is an important task. On the other hand, it is well known that the map

a 7!rðaÞ, that takes an element a of a Banach algebra A to its spectrum rðaÞ, is not
continuous in general. There are many examples in the literature to demonstrate

this. In particular, if T is a bounded linear operator defined on a separable Hilbert

space H with an orthonormal basis fejg, then the spectrum rðTÞ of T depends

discontinuously on the matrix entries hTej; eii. We have given one such example

(see Example 8.1).
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In order to overcome this difficulty of discontinuity, the researchers have

suggested computation of some other sets than the spectrum, though the main

objective may be the computation of the spectrum. The basic idea is that these sets

should on the one hand provide approximation of the spectrum in some sense and at

the same time should depend continuously on the elements under consideration at

least in many cases of practical interest.

In the next six sections, we review the basic properties and some examples of

these six sets, namely, Spectrum (Sect. 2), Ransford spectrum (Sect. 3), Numerical

Range (Sect. 4), Condition spectrum (Sect. 5), �-pseudospectrum (Sect. 6) and

ðn; �Þ-pseudospectrum (Sect. 7). We also disccuss some relations among these sets.

Section 8 deals with the question of stability of these sets. Finally in the last section

we make a passing mention of some results about these sets without going into a

detailed discussion. In general, proofs are not given, but references where these

proofs can be found are cited.

We shall use the following notations throughout this article. Let

• Bðw; rÞ :¼ fz 2 C : jz� wj\rg, the open disc with the centre at w and radius r,

• Dðz0; rÞ :¼ fz 2 C : jz� z0j � rg, the closed disc with the centre at z0 and radius

r,

• Aþ Dð0; rÞ ¼
S

a2A Dða; rÞ for A � C and dðz;KÞ ¼ inffjz� kj : k 2 Kg, the

distance between a complex number z and a closed set K � C.

• Let dX denote the boundary of a set X � C.

• Cn�n denotes the space of square matrices of order n and B(X) denotes the set of

bounded linear operators on a Banach space X.

2 Spectrum

We shall review some basic concepts about spectrum in this section. Since our main

objects of study are spectra of elements in a Banach algebra, we shall begin with

some definitions related to a Banach algebra.

Definition 2.1 Complex Algebra: A complex algebra A is a ring that is also a

complex vector space such that

ðaaÞb ¼ aðabÞ ¼ aðabÞ for all a; b 2 A; a 2 C

A is called commutative if ab ¼ ba for all a; b 2 A.

We shall assume that A has a unit element 1 satisfying 1a ¼ a ¼ a1 for all a 2 A.

It is well known that when such a unit element exists, it is unique.

We need the following concepts.

Definition 2.2 Invertibility Let A be a complex algebra with the unit element 1. An

element a 2 A is said to be invertible in A if there exists b 2 A such that

ab ¼ 1 ¼ ba. Such an element b is called inverse of a. Also a 2 A is said to be left

invertible in A if there exists b 2 A such that ba ¼ 1. Such an element b is called a

left inverse of a. Similarly, a 2 A is said to be right invertible in A if there exists

c 2 A such that ac ¼ 1. Such an element c is called a right inverse of a.
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Remark 2.3 It is well known that if a 2 A is invertible, then it has a unique inverse

and we shall denote it by a�1. On the other hand, left or right inverse, even if exists,

need not be ubique.

Definition 2.4 Banach Algebra: Let A be a complex algebra. An algebra norm on

A is a function k:k : A ! R satisfying:

1. kak� 0 for all a 2 A and kak ¼ 0 if and only if a ¼ 0.

2. kaak ¼ jajkak for all a 2 A and a 2 R

3. kaþ bk�kak þ kbk for all a; b 2 A.

4. kabk�kakkbk for all a; b 2 A.

A complex normed algebra is a complex algebra A with an algebra norm defined

on it. A Banach algebra is a complete normed algebra.

We shall assume that A is unital, that is A has unit 1 with k1k ¼ 1.

Example 2.5 Let X be a compact Hausdorff space, and let C(X) denote the set of all

complex valued continuous functions on X. Then C(X) is a commutative Banach

algebra under pointwise operations and the sup norm given by

kfk :¼ supfjf ðxÞj : x 2 Xg; f 2 CðXÞ

Example 2.6 Let H be a complex Hilbert space and let BL(H) denote the set of all

bounded(continuous) linear operators on H. Then BL(H) is a Banach algebra under

the usual operations and the operator norm given by

kTk :¼ supfkTðxÞk : x 2 H; kxk� 1g; T 2 BLðHÞ

When H is of dimension n, BL(H) can be identified with Cn�n, the algebra of all

matrices of order n� n with complex entries.

More examples and basic theory of Banach algebras can be found in the

following books [3, 25].

Definition 2.7 Spectrum: Let A be a complex Banach algebra with unit 1. For k 2
C; k:1 is identified with k. Let InvðAÞ ¼ fx 2 A : x is invertible in Ag and SingðAÞ ¼
fx 2 A : x is not invertible in Ag: The spectrum of an element a 2 A is defined as:

rðaÞ :¼ fk 2 C : k� a 2 SingðAÞg

The spectral radius of an element a is defined as:

rðaÞ :¼ supfjkj : k 2 rðaÞg

The complement of the spectrum of an element a is called the resolvent set of a and

is denoted by qðaÞ.

Thus when A ¼ CðXÞ and f 2 A, rðf Þ coincides with the range of f.

Similarly when A ¼ Cn�n and M 2 A, rðMÞ is the set of all eigenvalues of A.
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We recall a few well known properties of the spectrum in the following theorem.

Theorem 2.8 Let A be a complex Banach algebra with unit 1 and let a 2 A. Then

1. rðaÞ is a nonempty compact subset of C .

2. The Spectral Radius Formula:

rðaÞ ¼ lim
n!1

kank1=n

3. The map a ! rðaÞ is upper semicontinuous.

A proof of this theorem can be found in [3].

3 Ransford spectrum

The idea of spectrum has undergone many genrealizations. Ransford [28] gave a

unified approach to many of these generalizations of spectrum. Though Ransford

studied this in the setting of a Banach space, we shall confine our discussion to a

complex Banach algebra A with unit 1.

Let A be a complex Banach algebra with unit 1. Let Inv(A) denote the set of all

invertible elements in A. Then, for each a 2 A,

rðaÞ ¼ fk 2 C : k1� a 62 InvðAÞg

Note that the set Inv(A) has the following properties.

1. 1 2 InvðAÞ.
2. 0 62 InvðAÞ.
3. If a 2 InvðAÞ and k 6¼ 0, then ka 2 InvðAÞ.
4. Inv(A) is an open subset of A.

One way of generalizing the idea of the spectrum is to replace the set Inv(A) by

some other set preferably having some of these properties. Thus the Exponential

spectrum arises in this way. In place of Inv(A) we consider

expðAÞ :¼ fexpðaÞ : a 2 Ag

Then for a 2 A, the exponential spectrum rexpðaÞ is defined by

rexpðaÞ :¼ fk 2 C : k1� a 62 expðAÞg

Note that in general

rðaÞ � rexpðaÞ:

Definition 3.1 Ransford set Let A be a complex Banach algebra with unit 1.

An open subset X of A satisfying the following properties is called a Ransford set.

1. 1 2 X.
2. 0 62 X.
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3. If a 2 X and k 6¼ 0, then ka 2 X.

Note that Inv(A) and expðAÞ are Ransford sets.

Definition 3.2 Ransford spectrum let a 2 A and X be a Ransford set. Then the

Ransford spectrum of a with respect to the Ransford set X is defined as follows:

rXðaÞ ¼ k 2 C : k1� a 62 Xf g:

Note that Inv(A) is a Ransford set and the usual spectrum rðaÞ is nothing but

rInvðAÞðaÞ, that is, Ransford spectrum with respect to the Ransford set Inv(A), in this

notation. Similar comments hold about expðAÞ and exponential spectrum.

For this spectrum, Ransford proved the following properties.

Theorem 3.3

1. rXð0Þ ¼ f0g and rXð1Þ ¼ f1g
2. If for a 2 A, rXðaÞ 6¼ ;, then rXðaÞ is compact
3. Let E :¼ fa 2 A : rXðaÞ 6¼ ;g. Then the map a ! rXðaÞ is an upper semicon-

tinuous function from E to compact subsets of C.

A proof of this theorem as well as several properties of Ransford spectrum can be

found in Ransford’s article cited above. Subsequent studies of Ransford spectrum

can be found in [2, 17].

4 Numerical range

Definition 4.1 Numerical Range Let A be a Banach algebra and a 2 A. The

numerical range of a is defined by

VðaÞ :¼ ff ðaÞ : f 2 A0; f ð1Þ ¼ 1 ¼ kfkg;

where A0 denotes the dual space of A.

The numerical radius mðaÞ is defined as

mðaÞ :¼ supfjkj : k 2 VðaÞg

Let A be a Banach algebra and a 2 A. Then a is said to be Hermitian if VðaÞ � R.

Definition 4.2 Spatial Numerical Range

Let X be a Banach space and T 2 BðXÞ. Let X0
denote the dual space of X. The

spatial numerical range of T is defined by

WðTÞ ¼ ff ðTxÞ : f 2 X
0
; kfk ¼ f ðxÞ ¼ 1 ¼ kxkg:
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For an operator T on a Banach space X, the spatial numerical range W(T) and the

numerical range V(T), where T is regarded as an element of the Banach algebra

B(X), are related by the following:

CoWðTÞ ¼ VðTÞ

where CoE denotes the closure of the convex hull of E � C.

The following theorem gives the relation between the spectrum and numerical

range.

Theorem 4.3 Let A be a Banach algebra and a 2 A.

Then the numerical range V(a) is a closed convex set containing rðaÞ. Thus
CoðrðaÞÞ � VðaÞ. Hence
rðaÞ� mðaÞ� kak� emðaÞ:

A proof of this can be found in [3].

5 Condition spectrum

Next we discuss one more such extension in terms of the condition number.

Definition 5.1 Condition Number Let A be a complex Banach algebra with unit 1.

The condition number of an invertible element a 2 A is defined as kakka�1k and

denoted by jðaÞ. It is convenient to make a convention that jðaÞ ¼ 1 if a is not

invertible.

We shall use this convention through out. The condition number is a very useful

concept and arises naturally in solving a system of equations. Specifically it is a

measure of the sensitivity of the answer to a problem to small changes in the initial

data of the problem.

For a fixed 0\�\1, define

X� :¼ a 2 InvðAÞ : jðaÞ\ 1

�

� �
:

As 0 is not invertible, 0 62 X�, also 1 2 X�, since 1k k 1�1
�� ��=1. Note that

ak k a�1
�� �� ¼ zak k ðzaÞ�1

�� �� ; 8z 2 C n f0g

and this proves that if a 2 X� and k 6¼ 0, then ka 2 X�. The map a ! ak k a�1
�� �� is

continuous and hence X� is an open set. These observations prove that X� is a

Ransford set.

Definition 5.2 Condition spectrum
Let 0\�\1. The �-condition spectrum of a for this � is defined by
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r�ðaÞ : ¼ k 2 C : k1� a 62 X�f g

¼ k 2 C : jðk1� aÞ� 1

�

� �

with the convention that jðk1� aÞ ¼ 1 when k� a is not invertible. Condition

spectral radius r�ðaÞ is defined by

r�ðaÞ :¼ supfjzj : z 2 r�ðaÞg:

This condition spectrum was defined for the first time in [18]. Suppose X is a

Banach space, T : X ! X is a bounded linear map and y 2 X. Consider the operator

equation

Tx� kx ¼ y

Then

• k 62 rðTÞ implies that this operator equation is solvable

• k 62 r�ðTÞ implies that this operator equation has a stable solution.

In view of this, the �-condition spectrum is expected to be a useful tool in numerical

solutions of operator equations.

Next we give a few elementary properties of the condition spectrum.

Theorem 5.3 Let A be a complex Banach algebra with unit 1.

1. r�ð0Þ ¼ f0g and r�ð1Þ ¼ f1g.
2. If 0\�1\�2\1, then r�1ðaÞ � r�2ðaÞ for every a 2 A

3. rðaÞ � r�ðaÞ for every a 2 A. In fact

rðaÞ ¼
\

0\�\1

r�ðaÞ

4. r�ðaÞ is a non empty compact subset of C for every a 2 A

5. The map a ! r�ðaÞ is an upper semi continuous function from A to compact

subsets of C.

A proof can be found in [18]

Next, we shall see a few examples.

Example 5.4 Diagonal matrix

Let k1; k2 2 C with k1 6¼ k2 and let M ¼ k1 0

0 k2

� �
: Then
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M � kIk k ¼maxf k� k1j j; k� k2j jg

ðM � kIÞ�1
�� �� ¼max

1

k� k1j j ;
1

k� k2j j

� �
:

Hence

r�ðMÞ ¼ k :
k� k1j j
k� k2j j �

1

�

� �
[ k :

k� k2j j
k� k1j j �

1

�

� �
:

Example 5.5 Triangular matrix

Let R : C2 ! C2 defined as Rðx; yÞ ¼ ð0; xÞ for all (x, y) in C2 (truncation of

right shift operator). Considering R as an operator on C2 we get

R� kIk k1 ¼ R� kk k1¼ 1þ kj j

ðR� kIÞ�1
�� ��

1
¼ ðR� kÞ�1
�� ��

1¼ 1

kj j þ
1

kj j2
:

Hence in both ðC2; k k1Þ and ðC2; k k1Þ

r�ðRÞ ¼ k : kj j �
ffiffi
�

p

1�
ffiffi
�

p
� �

:

Example 5.6 Right shift operator
Let R be the right shift operator on ‘p where p ¼ 1 or 1. We can show

R� kIk k1¼ R� kIk k1¼ kj j þ 1:

For kj j[ 1 ðR� kIÞ�1
exists and

ðR� kIÞ�1
�� ��

1
¼ ðR� kIÞ�1
�� ��

1¼ 1

kj j � 1
:

It is known that rðRÞ ¼ fk : kj j � 1g Also we can show

r�ðRÞ ¼ k : kj j � 1þ �

1� �

� �
:

In the next theorem, we list some more properties of the condition spectrum.

Theorem 5.7 Let A be a complex unital Banach algebra, a 2 A and 0\�\1.

1. Suppose a 6¼ k for every k 2 C. Then r�ðaÞ has no isolated points.

2. If a is not a scalar multiple of the identity, then for each k0 2 rðaÞ, there exist

r[ 0 such that Dðk0; rÞ � r�ðaÞ. In particular, rðaÞ$r�ðaÞ.
3. If r�ðaÞ ¼ rðaÞ then a ¼ k0 for some k0 2 C.
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4. r�ðaÞ has a finite number of components and every component of r�ðaÞ contains
an element from rðaÞ.

5. If M 2 Cn�n and r�ðMÞ has n components, then M is diagonalizable.

For a proof, see [18]

Corollary 5.8 If r�ðaÞ ¼ fk0g for some k0 2 C, then a ¼ k0.

Remark 5.9 A very well known classical problem in operator theory known as

‘‘T ¼ I?’’ problem, asks the following question: Let T be an operator on a Banach

space. Suppose rðTÞ ¼ f1g. Under what additional conditions can we conclude

T ¼ I?

From the above corollary it follows that if r�ðTÞ ¼ f1g then T ¼ I. In other

words if we replace spectrum by �-condition spectrum in the ‘‘T ¼ I00 problem, then

no additional conditions are required.

Remark 5.10 Numerical Range and condition spectrum are related as follows:

Let A be a complex unital Banach algebra. Let a 2 A.

If k 2 r�ðaÞ, then we can prove that

dðk;VðaÞÞ� �kk� ak

A proof can be found in [18].

6 Pseudospectrum

We now discuss yet another important and popular set related to the spectrum,

namely pseudospectrum. We begin with its definition.

Definition 6.1 Pseudospectrum Let A be a complex Banach algebra, a 2 A and

�[ 0. The �-pseudospectrum K�ðaÞ of a is defined by

K�ðaÞ :¼ fk 2 C : kðk� aÞ�1k� ��1g

with the convention that kðk� aÞ�1k ¼ 1 if k� a is not invertible.

This definition and many results in this section can be found in [14]. The book

[32] is a standard reference on Pseudospectrum. It contains a good amount of

information about the idea of pseudospectrum, (especially in the context of matrices

and operators), historical remarks and applications to various fields. Another useful

source is the website [33].

Remark 6.2 Other definitions
Some authors, in particular, Trefethen, have defined the following set as the �-

pseudospectrum of a:

K�
� ðaÞ :¼ fk 2 C : kðk� aÞ�1k[ ��1g:

There are some significant changes in these two definitions.

123

S. H. Kulkarni

Author's personal copy



1. K�ðaÞ is a compact subset of C whereas K�
� ðaÞ is not.

2. The map � 7!K�ðaÞ is right continuous but the map �7!K�
� ðaÞ is not.

In the case of most of the other results about K�ðaÞ, our methods can be easily

modified to obtain analogous results for K�
� ðaÞ. In general, K�ðaÞ is not the closure

of K�
� ðaÞ.

However, this is true in many cases. We shall see some information about this

later.

One reason given by some authors for accepting K�
� ðaÞ as the definition of

pseudospectrum is that if T is a bounded operator on a Banach space, then

K�
� ðTÞ ¼

[
kSk\�

rðT þ SÞ:

However, this is not the case for an arbitrary element of a Banach algebra (We shall

see such an example).

A more detailed discussion on these two ways of defining pseudospectrum can be

found in [31]

The following theorem gives some elementary properties of the pseudospectrum.

Theorem 6.3 Let A be a complex Banach algebra. Then

1. K�ðaÞ is a non-empty compact subset of C ða 2 A; �[ 0Þ:
2. rðaÞ ¼

T
�[ 0 K�ðaÞ ða 2 AÞ:

3. K�1ðaÞ 	 K�2ðaÞ ða 2 A; 0\�1\�2Þ:
4. K�ðaþ kÞ ¼ kþ K�ðaÞ ðk 2 CÞ:
5. K�ðkaÞ ¼ kK �

jkj
ðaÞ ða 2 A; k 2 C n f0g; �[ 0Þ:

6. K�ðaÞ � Dð0; kak þ �Þ ða 2 A; �[ 0Þ:
7. K�ðaþ bÞ � K�þkbkðaÞ ða; b 2 A; �[ 0Þ:
8. rðaþ bÞ � K�ðaÞ ða; b 2 A; �[ 0; kbk� �Þ, i.e.

S
kbk� �

rðaþ bÞ � K�ðaÞ.

9. K�ðaÞ þ Dð0; dÞ � K�þdðaÞ.

A proof can be found in [14]

The inclusion in (8) of the above Theorem can be proper. Consider the following

example:

Example 6.4 Let A ¼ a 2 C2�2 : a ¼ a b
0 a

� �� �
with norm given by

kak ¼ jaj þ jbj. Then A is a Banach algebra. Let a ¼ 0 1

0 0

� �
: Then it can be

verified that
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[
kbk� 1

rðaþ bÞ ¼ Dð0; 1Þ

which is properly contained in

K1ðaÞ ¼ fk 2 C : jkjðjkj � 1Þ� 1g ¼ D 0;
1þ

ffiffiffi
5

p

2

 ! !
:

Next, we consider the question of reverse inclusion in (8) of the above Theorem.

Lemma 6.5 Suppose A is a complex Banach algebra with the following property:

8a 2 InvðAÞ; 9b 2 SingðAÞ such that ka� bk ¼ 1

ka�1k : ð1Þ

Then 8a 2 A and k 2 K�ðaÞ; 9b 2 A such that kbk� � and k 2 rðaþ bÞ.

A proof can be found in [14]

Examples of Banach algebras that satisfy the hypothesis of the above Lemma can

be found in [17]. These include the algebras C(X), for a compact Hausdorff space X,

and Cn�n 8n 2 N. In fact, all C� algebras satisfy the hypothesis as given below.

Theorem 6.6 If A is a C� algebra, and a 2 InvðAÞ, then 9b 2 SingðAÞ such that

ka� bk ¼ 1
ka�1k.

Next, we consider an example of a Banach algebra in which this condition does

not hold.

Example 6.7 Consider A as in the Example 6.4 above. Let a ¼ 1 1

0 1

� �
. Then we

claim that

b 2 A; ka� bk ¼ 1

ka�1k ) b 2 InvðAÞ:

For the given a, a�1 ¼ 1 � 1

0 1

� �
and ka�1k ¼ 2. Any b 2 A is of the form

a b
0 a

� �
and b is invertible iff a 6¼ 0. Then ka� bk ¼ j1� aj þ j1� bj. If

ka� bk ¼ 1
ka�1k, i.e., j1� aj þ j1� bj ¼ 1

2
, then a 6¼ 0. Hence b is invertible.

Corollary 6.8 Let A be a complex Banach algebra satisfying the hypothesis of

Lemma 6.5 and a 2 A. Then

k 2 K�ðaÞ , 9b 2 A with kbk� � such that k 2 rðaþ bÞ:

Thus
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K�ðaÞ ¼
[

kbk� �

rðaþ bÞ:

The following theorems establish the relationships between the spectrum, the �-
pseudospectrum and the numerical range of an element of a Banach algebra.

Theorem 6.9 Let A be a Banach algebra, a 2 A and �[ 0. Then

dðk;VðaÞÞ� 1

kðk� aÞ�1k
� dðk; rðaÞÞ 8k 2 C n rðaÞ: ð2Þ

Thus

rðaÞ þ Dð0; �Þ � K�ðaÞ � VðaÞ þ Dð0; �Þ: ð3Þ

Next we consider the question of equality in some of these inclusions.

Definition 6.10 Let A be a Banach algebra and a 2 A. We define a to be of G1-class

if

kðz� aÞ�1k ¼ 1

dðz; rðaÞÞ 8z 2 C n rðaÞ: ð4Þ

The following lemma is elementary.

Lemma 6.11 Let A be a Banach algebra and a 2 A. Then

K�ðaÞ ¼ rðaÞ þ Dð0; �Þ 8�[ 0 ð5Þ

iff a is of G1-class.

Remark 6.12 The idea of G1-class is due to Putnam who defined it for operators on

Hilbert spaces. (See [26, 27].) It is known that the G1-class properly contains the

class of seminormal operators (TT� � T�T or T�T � TT�) and this class properly

contains the class of normal operators. Using Gelfand- Naimark theorem, we can

make similar statements about elements in a C� algebra.

In the finite dimensional case, G1 operators are normal.

Also it is easy to see that every element in a uniform algebra is of G1-class.

In particular, normal elements are hyponormal. In general, the equation (5) may

hold, for every �[ 0, for an element of a C�-algebra even though it is not normal.

Consider the right shift operator R on ‘2ðNÞ. It is not normal but

K�ðRÞ ¼ rðRÞ þ Dð0; �Þ ¼ Dð0; 1þ �Þ 8�[ 0. R is, however, a hyponormal

operator.

The following theorem shows that the numerical range V(a) of a is determined by

certain closed half-planes related to the pseudospectrum K�ðaÞ.
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Theorem 6.13 Let A be a Banach algebra, a 2 A and �[ 0. If H is a closed half-

plane in C such that

K�ðaÞ � H þ Dð0; �Þ 8�[ 0: ð6Þ

Then VðaÞ � H.

A proof can be found in [14].

The following corollary gives an equivalent condition in terms of the �-
pseudospectrum for an element of a Banach algebra to be Hermitian.

Corollary 6.14 Let A be a Banach algebra and a 2 A. Then a is Hermitian iff

K�ðaÞ � fz 2 C : jIm zj � �g 8�[ 0: ð7Þ

The numerical range of an element of a Banach algebra is a compact convex

subset of C containing its spectrum, and hence it also contains the closure of the

convex hull of the spectrum. In some cases, as given below, the equality holds.

Corollary 6.15 Let A be a Banach algebra and a 2 A. Suppose a is of G1-class.

Then VðaÞ ¼ Co rðaÞ and kak� e rðaÞ.

Following is an interesting theorem that is a consequence of the above

considerations.

Theorem 6.16 Let A be a Banach algebra. Suppose a is of G1-class for every a 2 A.

Then A is commutative, semisimple and hence isomorphic and homeomorphic to a

function algebra.

Proof By the above result, kak� erðaÞ 8a 2 A. Hence A is commutative by a

theorem of Hirschfeld and Zelazko [3]. Also, the condition kak� erðaÞ 8a 2 A

implies that A is semisimple. h

Next two propositions give relationship between condition spectrum and

pseudospectrum of an element in a complex unital Banach algebra. Their proofs

are elementary and can be found in [19].

Proposition 6.17 Let A be a complex Banach algebra with unit 1, a 2 A and

0\�\1. Then r�ðaÞ � K2�kak
1��

ðaÞ.

Proposition 6.18 Let A be a complex Banach algebra with unit 1 and �[ 0.

Suppose a 2 A is not a scalar multiple of 1 and let

M :¼ inffkk� ak : k 2 Cg: Then K�ðaÞ � r �
M
ðaÞ.

Remark 6.19 If a ¼ l:1 for some l 2 C, then �-condition spectrum of a is the

singleton set flg and �-pseudospectrum is the closed ball with centre l and radius �.
Thus the condition on a can not be dropped from the above proposition.

The following theorem involves the analytical functional calculus for elements of

a Banach algebra.
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Theorem 6.20 Let A be a Banach algebra and a 2 A. Let X � C be an open

neighbourhood of K�ðaÞ and C be a contour that surrounds K�ðaÞ in X. Let f be
analytic in X. We recall the definition of ~f ðaÞ in the analytical functional calculus as

~f ðaÞ ¼ 1

2pi

Z
C

ðz� aÞ�1
f ðzÞdz ð8Þ

Then

k~f ðaÞk� Ml

2p�
ð9Þ

where l ¼ length of C and M ¼ supfjf ðzÞj : z 2 Cg.

The following corollary gives an equivalent condition in terms of the �-
pseudospectrum for an element of a Banach algebra to be a scalar (i.e. a scalar

multiple of the identity).

Corollary 6.21 Let A be a Banach algebra, a 2 A and l 2 C. Then

a ¼ l , K�ðaÞ ¼ Dðl; �Þ 8�[ 0:

Proof If a ¼ l, it is trivial to see that K�ðAÞ ¼ Dðl; �Þ 8�[ 0. For the converse

part, by (4) of Theorem 6.3, we may assume that l ¼ 0. Let f ðzÞ ¼ z and

C ¼ fz 2 C : jzj ¼ �g. Then, with the notations of the above Theorem , M ¼ � and
l ¼ 2p�. Hence by the above Theorem , kak� �. Since this is true 8�[ 0,

a ¼ 0 ¼ l. h

The following corollary gives an equivalent condition in terms of the �-
pseudospectrum for an element of a Banach algebra to be a Hermitian idempotent.

Corollary 6.22 Let A be a Banach algebra and a 2 A. Then

K�ðaÞ ¼ Dð0; �Þ [ Dð1; �Þ 8�[ 0 ð10Þ

if and only if a is a non-trivial(that is, different from 0 and 1) Hermitian idempotent

and kak ¼ 1.

Next we consider some topological properties of the �-pseudospectrum of an

element of a Banach algebra, namely that the �-pseudospectrum has no isolated

points, and that it has a finite number of components.

Theorem 6.23 Let A be a Banach algebra, a 2 A and �[ 0. Then the �-
pseudospectrum K�ðaÞ of a has no isolated points. Also the �-pseudospectrum K�ðaÞ
of a has a finite number of components and each component of K�ðaÞ contains an
element of rðaÞ.

See [14] for a proof.

The above Theorem helps to determine certain properties of a matrix when its �-
pseudospectrum is known.
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Corollary 6.24 Let M 2 Cn�n and �[ 0.

1. If K�ðMÞ has n components, then M is diagonalizable.

2. If each of these components is a disc of radius � and k � k ¼ k � k2 then M is

normal.

3. If k � k ¼ k � k2, then K�ðMÞ ¼ Dðl; �Þ iff M ¼ lI.
4. If k � k ¼ k � k2, then K�ðMÞ ¼ Dð0; �Þ [ Dð1; �Þ iff M is a non-trivial orthog-

onal projection.

7 ðn,�)-pseudospectrum

In this section, we discuss one more set related to the spectrum that is very

important from the point of view of approximation of the spectrum. It is defined as

follows.

Definition 7.1 Let A be a unital Banach algebra, a 2 A, �[ 0 and n a nonnegative

integer. The ðn; �)-pseudospectrum of a is defined by

Kn;�ðaÞ :¼ rðaÞ [ k 62 rðaÞ : kðk� aÞ�2nk1=2
n

� 1

�

� �
:

This set was first introduced by Hansen [11, 12] for the operators on a Hilbert

space. This idea was extended to cover the operators on Banach spaces by

Seidel[29]. It was further extended for an element in a Banach algebra and more

investigations were carried out in [6, 7].

The following functions cn are quite useful in describing and proving properties

of ðn; �Þ � pseudospectrum.

Definition 7.2 Let A be a unital Banach algebra, a 2 A, �[ 0, z 2 C and n a

nonnegative integer. The functions cn and c are defined as follows:

cnða; zÞ :¼ kðz� aÞ�2nk�1=2n
if z 62 rðaÞ

and ¼ 0 if z 2 rðaÞ.

cða; zÞ :¼ dðz; rðaÞÞ:

First note that

Kn;�ðaÞ :¼ fk 2 C : cnða; kÞ� �g:

We observe that the ð0; �Þ-pseudospectrum is nothing but the usual �-pseudospec-
trum. Also, for a normal element in a C� algebra, we have Kn;�ðaÞ ¼ K�ðaÞ ¼
rðaÞ þ Dð0; �Þ for all n.
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The following theorem provides some elementary properties of the ðn; �Þ-
pseudospectrum. Its proof is given in [6].

Theorem 7.3 Let A be a Banach algebra, a; b 2 A, n a nonnegative integer and

�[ 0. Then the following statements hold:

1. Kn;�ðkÞ ¼ Dðk; �Þ 8k 2 C.

2. Knþ1;�ðaÞ � Kn;�ðaÞ.
3. rðaÞ ¼ \

�[ 0
Kn;�ðaÞ.

4. Kn;�1ðaÞ � Kn;�2ðaÞ for 0\�1\�2.
5. Kn;�ðaþ kÞ ¼ kþ Kn;�ðaÞ for k 2 C.

6. Kn;�ðkaÞ ¼ kKn; �jkj
ðaÞ for k 2 C n f0g.

7. Kn;�ðaÞ � Dð0; kak þ �Þ.
Further, if a is invertible and 0\�\ 1

ka�1k, then

Kn;�ðaÞ � z 2 C :
1

ka�1k � �� jzj � kak þ �

� �
:

8. Kn;�ðaÞ is a non-empty compact subset of C.

The following theorem says that Kn;�ðaÞ is an approximation of an �-
neighborhood of the rðaÞ for large values of n. Thus if we have a good method

of computing Kn;�ðaÞ, then we can get information about rðaÞ. This aspect of

computing ðn; �Þ-pseudospectrum is discussed by Hansen for bounded operators on

a separable Hilbert space. This involves the use of the functions cn.

Theorem 7.4 Let A be a Banach algebra, a 2 A and �[ 0. Then

rðaÞ þ Dð0; �Þ ¼ \
n2Zþ

Kn;�ðaÞ:

Further, dHðKn;�ðaÞ; rðaÞ þ Dð0; �ÞÞ ! 0 as n ! 1.

A prooof can be found in [6]. The following theorem gives another way of

looking at this approximation.

Theorem 7.5 Let A be a Banach algebra, a 2 A. Then for 0\�\g, there exists

n0 2 N such that for all n� n0,

rðaÞ þ Dð0; �Þ � Kn;�ðaÞ � rðaÞ þ Dð0; gÞ

A prooof can be found in [6].

The inclusion rðaÞ þ Dð0; �Þ � Kn;�ðaÞ can be proper. We give an example

below.

Example 7.6 Let the Banach algebra A and an element a 2 A be as in the

Example 6.4. Then it can be shown that there exists k 2 Kn;�ðaÞ but

k 62 rðaÞ þ Dð0; �Þ. See [6] for details.
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We now introduce a class of elements that have some special properties with

respect to the spectrum and ðn; �)-pseudospectrum.

Definition 7.7 Let A be a unital Banach algebra and n a non-negative integer. An

element a 2 A is said to be of Gn -class if

kðk� aÞ�2n�1

k1=2
n�1

¼ 1

dðk; rðaÞÞ 8k 62 rðaÞ:

This means cn�1ða; kÞ ¼ dðk; rðaÞ ¼: cðk; aÞ for all k 2 C.

It follows from the definition that a is of Gn -class iff

Kn�1;�ðaÞ ¼ rðaÞ þ Dð0; �Þ 8�[ 0. For n ¼ 1, the above definition coincides with

the familiar definition of G1-class .

In the algebra A of the above Example 6.4, b ¼ x y

0 x

� 	
2 Gn iff y ¼ 0.

Thus, in this algebra, G1 and Gn -class elements are the same for all n.

Note that

cn�1ða; zÞ� cnða; zÞ� dðz; rðaÞÞ for all z 2 C:

Hence Gn -class is contained in Gnþ1 -class . Thus we find that if a is of Gn -class,

then 8m� n, Km;�ðaÞ ¼ rðaÞ þ Dð0; �Þ 8�[ 0.

The inclusion Gn � Gnþ1 can be proper. An example to support this claim can be

found in [6].

The following theorem gives a characterization of scalar elements in a Banach

algebra in terms of its ðn; �)-pseudospectrum.

Theorem 7.8 Suppose A is a Banach algebra, a 2 A and n a non-negative integer.

Then

a ¼ k () Kn;�ðaÞ ¼ Dðk; �Þ 8�[ 0:

A proof can be found in [6].

The next theorem gives some topological properties of ðn; �)-pseudospectrum.

Note that these are very similar to the corresponding properties of the

pseudospectrum.

Theorem 7.9 Let A be a Banach algebra, a 2 A; n 2 Zþ and �[ 0: Then

1. Kn;�ðaÞ has no isolated points

2. Kn;�ðaÞ has a finite no of components and each component contains at least one

element of rðaÞ:

A proof is given in [6].
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8 Stability of the spectrum and related sets

As we have already observed, the spectrum is a very useful concept in several

applications. In concrete cases, it has well known interpretations such as the

spectrum of a square matrix or spectrum of an operator. Thus the computation of the

spectrum of an element is an important task. On the other hand, as observed in the

Introduction, it is well known that the map a 7!rðaÞ is not continuous in general.

There are many examples in the literature to demonstrate this. In particular, if T is a

bounded linear operator defined on a separable Hilbert space H with an orthonormal

basis fejg, then the spectrum rðTÞ of T does not depend continuously on the matrix

entries hTej; eii. We may consider the following example given in [12].

Example 8.1 Let d be a real number and let Td : ‘
2ðZÞ ! ‘2ðZÞ be defined by

ðTdxÞðnÞ ¼ dxðnþ 1Þ if n ¼ 0 and ðTdxÞðnÞ ¼ xðnþ 1Þ if n 6¼ 0 for

x ¼ fxðnÞg 2 ‘2ðZÞ. Then it can be shown that for each d 6¼ 0, the spectrum

rðTdÞ is the unit circle fz 2 C : jzj ¼ 1g but for d ¼ 0, we have

rðT0Þ ¼ fz 2 C : jzj � 1g, the closed unit disc. On the other hand Td ! T0 as

d ! 0.

This situation is of concern to a numerical analyst because if one does

computation of the spectrum of T0 on a computer, then due to round off and

truncation errors, one gets the solution of a slightly perturbed problem, that is the

spectrum of Td for a small value of d. But as the above example shows, this solution

will be quite away from the desired solution.

We discuss the stability of the other spectrum related sets beginning with the

Numerical range. Let us recall the following notation.

Let Rþ ¼ fx 2 R : x[ 0g and KðCÞ denote the set of compact subsets of C

equipped with the Hausdorff metric defined as

dHðK;DÞ ¼ max sup
s2K

dðs;DÞ; sup
t2D

dðt;KÞ
� �

:

Theorem 8.2 Let A be a complex unital Banach algebra and a; b 2 A. Then

dHðVðaÞ;VðbÞÞ� ka� bk. Thus the map a 7!VðaÞ is continuous, in fact, uniformly

continuous.

Proof Let s 2 VðaÞ. Then s ¼ f ðaÞ for some f 2 A0 with kfk ¼ 1 ¼ f ð1Þ. Then
f ðbÞ 2 VðbÞ. Hence dðs;VðbÞÞ� js� f ðbÞj ¼ jf ðaÞ � f ðbÞj � ka� bk. Similarly,

for every t 2 VðbÞ, we can show that dðt;VðaÞÞ� ka� bk. h

Next we consider the question of stability of �-pseudospectrum and ðn; �)-
pseudospectrum. Since �-pseudospectrum is a special case of ðn; �)-pseudospectrum,

we shall only consider the results about ðn; �)-pseudospectrum. We begin with the

follwing important theorem.

Theorem 8.3 Let A be a complex unital Banach algebra. Then for a fixed element

a 2 A, the map � 7!Kn;�ðaÞ is right continuous.
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This is proved in [6]. This theorem says that the map is continuous whenever it is

left continuous. In the following theorem, we study some equivalent conditions for

(left) disconinuity of the map.

Theorem 8.4 Let A be a complex unital Banach algebra, a 2 A, �0 [ 0 and n a

non-negative integer. Then the following statements are equivalent.

1. The map �7!Kn;�ðaÞ is left discontinuos at �0.
2. The level set fk 2 C : cnða; kÞ ¼ �0g contains a non-empty open set.

3. The closure of the set fk 2 C : cnða; kÞ\�0g is properly contained in the set

fk 2 C : cnða; kÞ� �0g.

This theorem is proved in [7]. The following theorem gives some equivalent

conditions for the contnuity of this map.

Theorem 8.5 Let A be a complex unital Banach algebra, a0 2 A, �0 [ 0 and n a

non-negative integer. Then the following statements are equivalent.

1. The map �7!Kn;�ðaÞ is continuos at �0.
2. The map a 7!Kn;�ðaÞ is continuos at a0.
3. The map ð�; aÞ7!Kn;�ðaÞ is continuos at ð�0; a0Þ with respect to the metric in the

domain given by

kð�1; a1Þ � ð�2; a2Þk ¼ j�1 � �2j þ ka1 � a2k

for all positive �1; �2 and a1; a2 2 A and the Hausdorff metric in the codomain.

4. The level set fk 2 C : cnða0; kÞ ¼ �0g does not contain any non-empty open set.

5. The closure of the set fk 2 C : cnða0; kÞ\�0g is equal to the set

fk 2 C : cnða0; kÞ� �0g.

This is proved in [7]. Essentially this theorem says that the question of continuity

of this map depends upon whether the level set fk 2 C : cnða0; kÞ ¼ �0g contains

any non-empty open set or not. A natural question here is what are the examples of

Banach algebras and elements in those Banach algebras where this condition is

satisfied. We shall need some definitions to answer that question.

Definition 8.6 A Banach space X is said to be complex uniformly convex if for

every �[ 0, 9d[ 0 such that

x; y 2 X; kyk� � and kxþ fyk� 1 8f 2 C with jfj � 1 ) kxk� 1� d:

Note that all uniformly convex spaces are complex uniformly convex. Thus

Hilbert spaces and Lp spaces with 1\p\1 are complex uniformly convex. It is

known that L1 is complex uniformly convex, though not uniformly convex (See [9]).

Also L1 is not complex uniformly convex, but its dual ðL1Þ0 is (See [30]). We can

now answer the question raised in the last paragraph.
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Theorem 8.7 Let A be a complex unital Banach algebra, a0 2 A, �0 [ 0 and n a

non-negative integer. Then one and hence all the conditions of Theorem 8.5 are

satisfied if any one of the following holds.

1. a0 is of Gnþ1-class.

2. The resolvent set C n rða0Þ is a connected subset of C.

3. A ¼ BðXÞ with X or its dual X0 is complex uniformly convex.

A proof can be found in [7].

Remark 8.8 The above theroem helps in obtaining several examples of Banach

algebras and elements in those Banach algebras where the condition for continuity

of this map is satisfied. Let X be a Banach space and A ¼ BðXÞ. Let K be a compact

linear map on X. Then the spectrum rðKÞ of K is a countable set, hence its

complement in C is connected. It follows by the above theorem that for any non-

negative integer n and any positive �, the map T 7!Kn;�ðTÞ is continuous at K. In

particular, this happens when X is finite dimensional. Also the map T 7!Kn;�ðTÞ is
continuous at every T 2 BðXÞ, when X is a Hilbert space or X ¼ Lp with 1� p�1,

because, in this case, X or its dual X0 is complex uniformly convex.

Next we give an example of a bounded linear operator T on a Banach space X that

does not satisfy any of the equivalent conditions given in Theorem 8.5. In

particular, the map S 7!Kn;�ðSÞ; S 2 BðXÞ is not continuous at S ¼ T .

Example 8.9 Let m be a non-negative integer, X ¼ ‘1ðZÞ with the norm defined by

kxk :¼
Xm�1

k¼0

jxkj þ supfjxkj : k 2 Z n f0; . . .;m� 1g; x 2 X:

This norm is equivalent to the usual supnorm on X. However neither X nor its dual

X0 is complex uniformly convex. LetM[ 4. Define T : X ! X by ðTxÞðkÞ ¼ akxkþ1

where ak ¼
1

M
for k 2 f0; . . .;m� 1g and ak ¼ 1 for k 2 Z n f0; . . .;m� 1g. Then

it can be shown that there exists 0\d\
1

M
such that Bð0; dÞ � C n rðTÞ and kðT �

zÞ�mk ¼ Mm for all z 2 Bð0; dÞ. The details of this computation can be found in [7].

This shows that the level set fk 2 C : cnðT; kÞ ¼ 1=Mg, where m ¼ 2n contains a

non-empty open set Bð0; dÞ. This example was mentioned in [29].

The above example shows that, in general, the map a 7!Kn;�ðaÞ may not be

continuos at a0. However this phenomenon of discontinuity can be controlled by

taking large values of n. This was first mentioned in [29]. The following theorem,

proved in [7] elaborates this idea.

Theorem 8.10 Let A be a complex unital Banach algebra, a 2 A, �0 [ 0. Then the

following statements hold.
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1. For every g1 [ 0, there exists n1 2 N such that dHðKn;�ðaÞ; rðaÞ þ Dð0; �ÞÞ\g1
for all n� n1 and all �� �0. More precisely,

rðaÞ þ Dð0; �Þ � Kn;�ðaÞ � rðaÞ þ Dð0; �þ g1Þ
2. For every g2 [ 0, there exists n2 2 N such that dHðKn;�1ðaÞ;Kn;�2ðaÞÞ\j�1 �

�2j þ g2 for all n� n2 and all �1; �2 � �0.
3. For every 0\g3\�0, there exists n3 2 N such that for all n� n3, there exists a

dðnÞ[ 0 such that dHðKn;�1ðaÞ;Kn;�2ðbÞÞ\j�1 � �2j þ g3 for all �1; �2 2 ½g3
4
; �0


and all b 2 A with ka� bk\dðnÞ.

Remark 8.11 It is natural to ask similar questions about the condition spectrum,

namely, what are the conditions for the continuity of the map a 7!r�ðaÞ or more

generally the map ð�; aÞ7!r�ðaÞ? As of now, no satisfactory answers are available to

these questions. Some work on the level sets associated with the condition spectrum

is reported in [22].

9 Concluding remarks

We shall conclude this survey by mentioning some results about the spectrum

related sets without any elaborate discussion of those results. One idea is to look at

some well known result about the spectrum and try to investigate what kind of

analogues hold in case of these other sets. For example, there are large number of

results in the literature on characterizing linear as well as nonlinear maps that

preserve spectrum or numerical range or some numbers related to these sets such as

spectral radius. Problems of this type are known as ‘‘Preserver Problems’’. A good

account of such problems can be found in [24]. Some results about linear maps

preserving pseudospectrum and condition spectrum are given in [19]. Analogues of

the spectral mapping theorem for pseudospectrum and condition spectrum are

discussed in [23] and [20] respectively. If A is a complex Banach algebra with unit 1

and p is an idempotent element in a, then pAp is also a Banach algebra with unit p. It

is natural to investigate the relationship beteween the spectrum of a as an element of

A and the spectrum of pap as an element of pAp and also similar questions about the

other related sets. These are discussed in [15] and [16]. Similar studies in case of

ðn; �Þ-pseudospectrum are reported in [8]. Suppose the elements a and b in a

complex unital Banach algebra satisfy the following condition: K�ðaxÞ ¼ K�ðbxÞ for
all x 2 A. Then a ¼ b in certain situations. These are discussed in [14].

The problem of computing the spectrum of an element in a stable manner

remains a challenging and interesting problem. Any such computation will involve

computation of the functions cnða; zÞ. The methods of computing cnðT; zÞ effectively
are known when T is a bounded operator on a separable Hilbert space. These are

based on computing the singular values of the finite sections of T (see [11, 12] for

details). Some methods of computing these sets using Banach algebra techniques are

discussed in [21]. There are many issues involving computational complexity of this

problem. A very interesting discussion on these issues can be found in [13].
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In our discussion of stability of the spectrum and other sets in Section 8, we have

considered the topology given by the norm on the Banach algebra under

consideration and the Hausdorff metric on the subsets of the complex plane. When

the algebra is of bounded operators on a Banach or Hilbert space and when one

wants to discuss the approximation of the spectrum and related sets corresponding

to an operator T by similar sets corresponding to its finite dimensional truncations

Tn, one has to note that, in general, the sequence fTng does not converge to T in

norm. Hence other topologies like strong operator topology have to be considered.

Also the notion of convergence of subsets of C needs to be changed. These ideas are

persued by Arveson [1] and also by Böttcher, Silbermann [4] and their coauthors in

different ways.

Arveson [1] has considered a sequence fHng of finite dimensional subspaces of a

Hilbert space H with some additional properties called filtration of H. He then

defines the degree of an operator with respect to such a filtration. An operator of

finite degree is a generalization of a band limited operator. It is then shown that if a

self-adjoint operator T can be expressed as a sum of operators of finite degree, then

some information about the essential spectrum of T can be obtained from the spectra

of Tn.

In Böttcher and Silbermann [4], a sequence fTng converging to T in the strong

operator topology is called stable if there exists a natural number n0 such that Tn is

invertible for all n� n0 and supfkT�1
n k; n� n0g is finite. They consider an algebra F

of bounded sequences fTng and the ideal I of those sequences fTng such that fkTnkg
converges to 0. Then by a classical theorem of Kozak [4], a sequence fTng is

stable if and only if the coset fTng þ I is invertible in the quotient algebra F /

I. Thus a question of stability becomes equivalent to a question of invertibility. This

is called the algebraization of stability and this technique is used to get information

about the spectra and pseudospectra of Toeplitz operators in [4].

In case of certain Banach algebras, their elements are naturally associated with

some other objects. For example, in case of certain Banach algebras of Laurent and

Toeplitz operarors, every such operarator is associated with a symbol which is a

function. In such a situation, one would naturally want to know if any relation exists

between such a symbol of a Toeplitz operator and and its spectrum and related sets.

Some work dealing with this aspect about spectrum, pseudospectrum and condition

spectrum can be found in [4] and [21]. Nothing much seems to be known about

other related sets. In particular, we do not know any information regarding Ransford

spectrum of a Toeplitz operator and its symbol.

Since we have confined our attention to the context of a Banach algebra, we

could not deal with unbounded operators as such operators can not be members of

any Banach algebra. Some times it so happens that even if an operator T is

unbounded, the inverse of kI � T is a bounded operator for some values of k. In case
of such an operator, there is a natural way to define spectrum and �-pseudospectrum
(see [32]). In principle, this approach can be extended to ðn; �Þ-pseudospectrum. It is

not clear whether and how the ideas of Ransford spectrum can be developed in this

context.
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4. Böttcher, A., and B. Silbermann. 1999. Introduction to large truncated Toeplitz matrices. New York:

Springer.

5. Douglas, R.G. 1998. Banach algebra techniques in operator theory, Graduate Texts in Mathematics,

vol. 179, 2nd ed. New York: Springer.

6. Dhara, K., and S.H. Kulkarni. 2018. The ðn; �Þ-pseudospectrum of an element of a Banach algebra.

Journal of Mathematical Analysis and Applications 464 (1): 939–954.

7. Dhara, K., S.H. Kulkarni, and Markus Seidel. 2019. Continuity of the -pseudospectrum of an element

of a Banach algebra. Integral Equations Operator Theory 91 (4): 32. https://doi.org/10.1007/s00020-

019-2530-6.

8. Dhara, K., and S. H. Kulkarni. 2019. The ðn; �Þ-pseudospectrum of an element of a reduced Banach

algebra. Advances in Operator Theory, pp. 1–13.

9. Globevnik, J. 1975. On complex strict and uniform convexity. Proceedings of the American Math-

ematical Society 47: 175–178.

10. Hagen, R., S. Roch, and B. Silbermann. 2001. C* -algebras and numerical analysis. Monographs and

Textbooks in Pure and Applied Mathematics, vol. 236. New York: Marcel Dekker Inc.

11. Hansen, A.C. 2008. On the approximation of spectra of linear operators on Hilbert spaces. Journal of

Functional Analysis 254 (8): 2092–2126.

12. Hansen, A.C. 2010. Infinite-dimensional numerical linear algebra: theory and applications. Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466 (2124):

3539–3559.

13. Hansen, A. C., and O. Nevanlinna, Complexity issues in computing spectra, pseudospectra and

resolvents, in Études opératorielles, 171–194, Banach Center Publ., 112, Polish Acad. Sci. Inst.

Math., Warsaw.

14. Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectrum of an element of a Banach algebra. Oper-

ation Matrices 11 (1): 263–287.

15. Krishnan, A., and S.H. Kulkarni. 2017. Pseudospectra of elements of reduced Banach algebras.

Advances in Operator Theory 2 (4): 475–493.

16. Krishnan, A., and S.H. Kulkarni. 2018. Pseudospectra of elements of reduced Banach algebras II.

Functional Analysis of Approximate Computation 10 (2): 33–45.

17. Kulkarni, S.H., and D. Sukumar. 2005. Gleason-Kahane- _Zelazko theorem for spectrally bounded

algebra. International Journal of Mathematics and Mathematical Sciences 2005 (15): 2447–2460.

18. Kulkarni, S.H., and D. Sukumar. 2008. The condition spectrum. Acta Science Mathematics (Szeged)

74 (3–4): 625–641.

19. Kumar, G.K., and S.H. Kulkarni. 2012. Linear maps preserving pseudospectrum and condition

spectrum. Banach Journal of Mathematical Analysis 6 (1): 45–60.

20. Kumar, G. Krishna, and S. H. Kulkarni, An analogue of the spectral mapping theorem for condition

spectrum, in Concrete operators, spectral theory, operators in harmonic analysis and approximation,

299–316, Oper. Theory Adv. Appl., 236, Birkhäuser/Springer, Basel.

21. Kumar, G.K., and S.H. Kulkarni. 2015. Banach algebra techniques to compute spectra, pseudospectra

and condition spectra of some block operators with continuous symbols. Annals of Functional

Analysis 6 (1): 148–169.

123

S. H. Kulkarni

Author's personal copy

https://doi.org/10.1007/s00020-019-2530-6
https://doi.org/10.1007/s00020-019-2530-6


22. Sukumar, D., and S. Veeramani. 2017. Level sets of the condition spectrum. Annals of Functional

Analysis 8 (3): 314–328.

23. Lui, S.-H. 2003. A pseudospectral mapping theorem. Mathematics Computational 72 (244):

1841–1854.

24. Molnár, L. 2007. Selected preserver problems on algebraic structures of linear operators and on

function spaces. Lecture Notes in Mathematics, vol. 1895. Berlin: Springer.

25. Palmer, Theodore W. 1994. Banach algebras and the general theorey of *-algebras, vol. 1, 1st ed.

Cambridge: Cambridge University Press.

26. Putnam, C.R. 1973. Almost normal operators, their spectra and invariant subspaces. Bulletin of the

American Mathematical Society 79: 615–624.

27. Putnam, C.R. 1979. Operators satisfying a G1 condition. Pacific Journal of Mathematics 84 (2):

413–426.

28. Ransford, T.J. 1984. Generalised spectra and analytic multivalued functions. Journal of the London

Mathematical Society 29 (2): 306–322.

29. Seidel, M. 2012. On ðN; �Þ-pseudospectra of operators on Banach spaces. Journal of Functional

Analysis 262 (11): 4916–4927.

30. Shargorodsky, E. 2008. On the level sets of the resolvent norm of a linear operator. Bulletin of the

London Mathematical Society 40 (3): 493–504.

31. Shargorodsky, E. 2009. On the definition of pseudospectra. Bulletin of the London Mathematical

Society 41 (3): 524–534.

32. Trefethen, L.N., and M. Embree. 2005. Spectra and pseudospectra The Behavior of Nonnormal

Matrices and Operators. Princeton, NJ: Princeton Univ. Press.

33. The web site: PEUDOSPECTRA GATEWAY. http://www.cs.ox.ac.uk/pseudospectra/index.html

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

S. H. Kulkarni1,2

& S. H. Kulkarni

shk@iitpkd.ac.in

1 Present Address: Indian Institute of Technology Palakkad, Ahalia Integrated Campus, Palakkad,

Kerala 678557, India

2 Department of Mathematics, Indian Institute of Technology-Madras, Chennai 600036, India

123

Spectrum and related sets: a survey

Author's personal copy

http://www.cs.ox.ac.uk/pseudospectra/index.html
http://orcid.org/0000-0002-6959-5159

	Spectrum and related sets: a survey
	Abstract
	Introduction
	Spectrum
	Ransford spectrum
	Numerical range
	Condition spectrum
	Pseudospectrum
	(n\comma \epsilon )-pseudospectrum
	Stability of the spectrum and related sets
	Concluding remarks
	Funding
	References




