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Abstract. The following result is proved: Let A be a commutative real

Banach algebra with unit 1. Let G denote the group of invertible elements

of A and let G1 be the connected component of G containing 1. If the

quotient group G/G1 contains an element of finite order other than G1,

then the order of such an element must be 2. If the group G/G1 is of finite

order, then its order must be 2
n
for some nonnegative integer n.

1. Introduction

Let A be a commutative complex Banach algebra with unit 1. Let G denote
the group of invertible elements of A and let G1 be the connected component of G
containing 1. Then G1 is also a group and G1 = {exp(a) : a ∈ A}. (See [1], [7].)
A well known theorem due to Lorch says that the quotient group G/G1 contains
no element of finite order except the unit element G1. (See [7], Theorem 10.44.)
This is false for real Banach algebras as the trivial example A = R shows. Here G
is the set of all nonzero real numbers, G1 is the set of all positive real numbers and
the element −1.G1 is of order two in G/G1. In fact G/G1 has only two elements.
A less trivial example is obtained by considering A = CR([0, 1]), the real Banach
algebra of all real valued continuous functions defined on the interval [0, 1] with
pointwise operations and the supremum norm. In this case also, the group G/G1

is of order two. (See [7], Exercise 21, Chapter 10.)
This raises a natural question: What are the possible orders of elements in the

group G/G1 of a real Banach algebra A? This question has a very interesting
answer, namely, 2 apart from of course one and infinity. This also means that
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if G/G1 is a finite group, then its order must be 2n for some natural number n.
The aim of this note is to present a proof of this result. A careful reader may
observe that the main ideas of the proof are already present in the known proof
of the theorem for complex Banach algebras. Though it seems natural that such
a result should have been expected, it does not seem to have appeared in print.

Since every complex algebra is also a real algebra, the class of real Banach
algebras is a larger class. On the other hand, the class of complex Banach algebras
is a very well studied class, with rich theory mainly due to the possibility of using
very rich complex function theory. There have been attempts in the literature to
extend the results of complex Banach algebras to the larger class of real Banach
algebras. An account of such attempts can be found in the monographs [3] and
[5]. Many of these attempts consist in considering some theorem about complex
Banach algebras and showing that a similar theorem also holds for real Banach
algebras. In contrast, the present note considers a theorem which is true for
complex Banach algebras but not true for real Banach algebras. Another instance
of a similar theorem is the well known Gleason-Kahane-Zelazko Theorem. (See
[2])

2. Main result

We refer to [3] for the basic theory of real Banach algebras. Here we recall
a few concepts needed to prove our main result. Let A be a commutative real
Banach algebra with unit 1. Let G denote the group of invertible elements of A
and let G1 be the connected component of G containing 1. For s ∈ R, we shall
identify the element s1 with s. For a ∈ A, the spectrum σ(a) of a is defined by

σ(a) := {s+ it ∈ C : (s− a)2 + t2 /∈ G}
It is clear that s + it ∈ σ(a) if and only if s − it ∈ σ(a). Also if s is real,

then s ∈ σ(a) if and only if s − a /∈ G. We also need the following: If m is a
natural number, then σ(am) = {λm : λ ∈ σ(a)}. This is a special case of the
Spectral Mapping Theorem for real Banach algebras. (See [3], [4] for a proof.) A
consequence of the Spectral Mapping Theorem is that if the spectrum σ(a) does
not contain any negative real number, then a = exp(b) for some b ∈ A. This fact
is used in proving that G1 = {exp(a) : a ∈ A}. A proof of this given in [1] or
[7] for complex Banach algebras works for real Banach algebras as well. (See also
[5].)

Theorem 2.1. Let A be a commutative real Banach algebra with unit 1. Let G
denote the group of invertible elements of A and let G1 be the connected component
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of G containing 1. If the quotient group G/G1 contains an element of finite order
other than G1, then the order of such an element must be 2.

Proof. It is enough to prove the following claim.
Claim: If a ∈ G and am ∈ G1 for some natural number m, then a2 ∈ G1.

Since am ∈ G1, we have am = exp(x) for some x ∈ A. Let b = exp(x/m) ∈ G1

and c = ab−1. Then by the commutativity ofA, cm = amb−m = exp(x) exp(−x) =
1. Define g : C → A by

g(λ) = (s2 + t2)c2 − 2(s2 + t2 − s)c+ (s2 + t2 − 2s+ 1), λ = s+ it ∈ C.

Let E = {λ ∈ C : g(λ) ∈ G}. Suppose λ = s + it /∈ E. Then λ �= 0 because
g(0) = 1 ∈ G. Also since, λ = s+ it /∈ E, we have

g(λ) = (s2 + t2)c2 − 2(s2 + t2 − s)c+ (s2 + t2 − 2s+ 1) /∈ G.

Since s2 + t2 �= 0, this gives

c2 − 2(1− s

s2 + t2
)c+ (1− 2s

s2 + t2
+

1

s2 + t2
) /∈ G.

A little calculation/simplification shows that this last expression is in fact
(c− α)2 + β2 /∈ G, where α+ iβ = λ−1

λ . In other words, λ−1
λ ∈ σ(c). Hence

(λ−1
λ )m ∈ σ(cm) = σ(1) = {1}. This implies (λ − 1)m = λm. Since this last

equation can have only a finite number of solutions in C, C\E is a finite set. Thus
E is a connected set. Hence g(E) is a connected subset of G containing g(0) = 1.
Thus g(E) ⊆ G1. In particular, c2 = g(1) ∈ G1 and in turn a2 = c2b2 ∈ G1. This
proves the claim. �

Remark 2.2. Note that in view of the above theorem, if G/G1 is a finite group,
then every element other than the identity element G1 is of order 2. Hence the
group G/G1 is isomorphic to Zn

2 for some nonnegative integer n. In particular,
the order of G/G1 is 2n. This happens in the case of the real Banach algebra Rn

with the coordinatewise multiplication and the max norm �.�∞.

Remark 2.3. We may further note that if A is not commutative, then G/G1 can
contain elements of finite order other than 1 or 2. In fact, Paulsen has shown in
[6], that given a natural number n, it is possible to construct a Banach algebra
A such that the group G/G1 of this algebra A is (isomorphic to) the cyclic group
of order n.
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