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1. Introduction

This article is based on an invited talk given by me at the National
Symposium on Mathematical Methods and Applications(NSMAA 2009)
organized by the the Department of Mathematics, Indian Institute of
Technology Madras on December 22, 2009. The Department has been
organizing such a symposium every year in honour of the celebrated
Indian Mathematician Srinivasa Ramanujan. I thank the organizers
for inviting me to give a talk in this symposium. It is an honour to be
associated with the illustrious memeory of Ramanujan.

An objecive of this talk is to highlight the connections between some
apparently unrelated theorems and the role of Banach algebras in these
theorems. The first of these theorems is the following well known theo-
rem due to the famous mathematician Norbert Wiener. Wiener’s proof
can be found in his book [11].

Theorem 1.1. Wiener’s Theorem: Let f be a periodic function on
[−π, π] . Suppose f has an absolutely convergent Fourier series and
f(t) 6= 0 for all t ∈ [−π, π]. Then 1/f also has absolutely convergent
Fourier series.

Gelfand gave an elegant proof of this theorem using the techniques
from Banach Algebras in his celebrated paper [2]. This was the first
paper in which the theory of Banach algebras was developed system-
atically. Gelfand’s proof is much shorter than the original proof of
Wiener and it attracted the attention of Mathematicians to the theory
of Banach algebras.

The second theorem is due to Jaffard [5] and deals with the decay of
off-diagonal entries of doubly infinite matrices. Note that such matrices
can be regarded as the operators on `2(Z), the space of all square
summable doubly infinite sequences of complex numbers.

Theorem 1.2. Jaffard’s theorem: If a matrix A with entries A(k, l), k, l ∈
Z is invertible on `2(Z) and there are constants C > 0 , r > 1 such
that

|A(k, l)| ≤ C(1 + |k − l|)−rfor all k, l ∈ Z,

then,
|A−1(k, l)| ≤ C(1 + |k − l|)−rfor all k, l ∈ Z.
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In order to discuss next theorem in our list, we need a definition.

Definition 1.3. Band dominated operators
We shall regard an infinite matrix A = [A(k, l)] , k, l ∈ Z as an

operator on `2(Z). Such a matrix is called a band matrix or band
operator if there exists n ∈ N such that A(k, l) = 0 for |k − l| > n. A
band dominated matrix (or operator) is a limit (in the operator norm)
of a sequence of band operators.

Then the theorem can be simply stated as follows: If a band domonated
operator is invertible, then its inverse is also band dominated. (Note
that this not true for band operators.)

A more detailed statement is given below.

Theorem 1.4. Theorem: For an infinite matrix A = [A(k, l)] , k, l ∈
Z , let An denote the nth band approximation of A given by An(k, l) =
A(k, l) for |k− l| ≤ n and An(k, l) = 0 otherwise. If A is invertible on
`2(Z) and there exist positive constants r, C such that

‖A− An‖ ≤ Cn−rfor all n ∈ N,

then there exists a sequence {Bn} of band matrices such that

‖A−1 −Bn‖ ≤ Cn−rfor all n ∈ N,

This brings us to the main question of the talk.

WHAT IS THE CONNECTION BETWEEN THESE THE-
OREMS?

In other words, is there any common theme that leads to each of
these theorems as a special case? The answer is yes and this connec-
tion/common theme is provided by the theory of Banach algebras. In
the next section, we review some basic concepts from the theory of
Banach algebras that are needed to understand this connection. More
information about above theorems and related issues can be found in
[3], [4] and [9]. The last section contains the details about this common
theme.

2. Banach algebras

Our objects of interest are spectra of elements in a Banach algebra.
We begin with the definition of a complex algebra.

Definition 2.1. Complex Algebras
A complex algebra A is a ring that is also a complex vector space

such that

(αa)b = α(ab) = a(αb) for all a, b ∈ A, α ∈ C
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A is called commutative if ab = ba for all a, b ∈ A.
We shall assume that A has a unit element 1 satisfying 1a = a = a1
for all a ∈ A.

Definition 2.2. Banach algebras
Let A be a complex algebra. An algebra norm on A is a function

‖.‖ : A → R satisfying:

(1) ‖a‖ ≥ 0 for all a ∈ A and ‖a‖ = 0 if and only if a = 0.
(2) ‖αa‖ = |α|‖a‖ for all a ∈ A and α ∈ R
(3) ‖a + b‖ ≤ ‖a‖+ ‖b‖ for all a, b ∈ A.
(4) ‖ab‖ ≤ ‖a‖‖b‖ for all a, b ∈ A.

A complex normed algebra is a complex algebra A with an algebra
norm defined on it. A Banach algebra is a complete normed algebra.

We shall assume that A is unital, that is A has unit 1 with ‖1‖ = 1.
Next we recall some standard examples of Banach algebras.

Example 2.3. Algebras of functions
Let X be a compact Hausdorff space, and let C(X) denote the set

of all complex valued continuous functions on X. Then C(X) is a
commutative Banach algebra under pointwise operations and the sup
norm given by

‖f‖ := sup{|f(x)| : x ∈ X}, f ∈ C(X)

Example 2.4. Algebras of Operators
Let H be a complex Hilbert space and let BL(H) denote the set of all

bounded(continuous) linear operators on H. Then BL(H) is a Banach
algebra under the usual operations and the operator norm given by

‖T‖ := sup{‖T (x)‖ : x ∈ H, ‖x‖ ≤ 1}, T ∈ BL(H)

When H is of dimension n, BL(H) can be identified with Cn×n, the
algebra of all matrices of order n× n with complex entries.

More examples and basic theory of Banach algebras can be found in
the following books: [1] and [7].

We now define our main objects of interest.

Definition 2.5. Spectrum
Let A be a complex Banach algebra with unit 1 and let a ∈ A. The

spectrum σA(a) of a is defined to be the set of all complex numbers λ
such that λ1− a is not invertible in A.

The Spectral Radius r(a) of a is defined by

rA(a) := sup{|λ| : λ ∈ σA(a)}
The subscript A will be dropped when the algebra under considera-

tion is fixed and no confusion is likely.
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Thus when A = C(X) and f ∈ A, σ(f) coincides with the range of
f .

Similarly when A = Cn×n and M ∈ A, σ(M) is the set of all eigen-
values of A.

Properties of Spectrum:

We now recall a few well known properties of the spectrum. Let A
be a complex Banach algebra with unit 1 and let a ∈ A. Then,

• σ(a) is a nonempty compact subset of C .
• The Spectral Radius Formula:

r(a) = lim
n→∞

‖an‖1/n

• The map a → σ(a) is upper semicontinuous. This means that
given any open subset U of C containing σ(a), there exists δ > 0
such that for every b ∈ A with ‖a− b‖ < δ, σ(b) ⊆ U .

3. Inverse-closed subalgebras

We are now in a position to say something about the main question
posed in the Introduction. We may note that each of the theorems
mentioned there deals with some elements in some Banach algebra. In
particular, each theorem says that if an element in a Banach algebra
has a a particular property, then its inverse, if exists, also has the same
property. This observation naturally leads to the following definition.

Definition 3.1. Inverse- closedness
Let A be a complex Banach algebra with unit 1 and let B be a sub-

algera of A containing 1. Then B is called inverse-closed in A if

a ∈ B and a−1 ∈ A implies a−1 ∈ B.

Now the main question posed in the Introduction can be reformu-
lated as follows:

WHEN IS B INVERSE-CLOSED IN A?

Before discussing this question further, we may note that this concept
has been given some other names also in the literature.

Let A and B be as above.

• B is inverse-closed in A.
• (B,A) is a Wiener pair.(Naimark)
• B is a spectral subalgebra of A. (Palmer)
• B is a local subalgebra of A.
• Spectral invariance, spectral permanece(Arveson)

The justification for the last of these names is due to the following
characterizartion of inverse-closedness in terms of the spectrum.
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Theorem 3.2. Let A be a complex Banach algebra with unit 1 and let
B be a subalgera of A containing 1. Then B is inverse-closed in A if
and only if for every x ∈ B,

σB(x) = σA(x).

The following theorem gives a condition for the two spectra to coin-
cide. More information can be found in [4].

Theorem 3.3. Let A be a complex Banach algebra with unit 1. Let
Inv(A) denote the set of all invertible elements in A. Then, for each
a ∈ A,
σA(a) = {λ ∈ C : λ1 − a /∈ Inv(A)} Next, let B be a closed subalgera
of A containing 1. Then ,

(1) Inv(B) is a union of components of B ∩ Inv(A).
(2) For x ∈ B, σB(x) is the union of σA(x) and a (posssibly empty)

collection of bounded components of the complement of σA(x).

In particular, if the the complement of σA(x) is connected, then
σB(x) = σA(x)..

A proof of the above theorem can be found in [8]. The situation
is better when the Banach algebra under consideration has some addi-
tional structure, namely involution. In particular, if it is a B∗−algebra,
we can give a very simple condition for a subalgebra to be inverse-
closed. We recall some relevant definitions.

Definition 3.4. Involutions
An involution on a complex algebra A is a mapping a → a∗ of A into

A that satisfies the following axioms:

(1) (a + b)∗ = a∗ + b∗ for all a and b in A;
(2) (αa)∗ = αa∗ for all a in A and α in C;
(3) (ab)∗ = b∗a∗ for all a and b in A;
(4) (a∗)∗ = a for all a in A.

Definition 3.5. B∗ − algebras
A Banach algebra A with an involution x → x∗ is called a B∗ −

algebra if

‖x∗x‖ = ‖x‖2

for every x ∈ A.

These algebras are also known as C∗ − algebra Known fact: If A is
a B∗ − algebra, then σA(xx∗) ⊆ [0,∞) for every x ∈ A. (See [8])

We now give the simple condition mentioned above.

Theorem 3.6. (See [8]) Suppose A is a B∗ − algebra with unit 1, B
is a closed subalgebra of A, 1 ∈ B and x∗ ∈ B for every x ∈ B. Then
σB(x) = σA(x) for every x ∈ B.
In other words, B is inverse-closed in A.
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Proof. : Suppose x ∈ B has inverse in A. Then x∗ and hence xx∗ also
have inverses in A. Hence σA(xx∗) ⊆ (0,∞). Thus the complement
of σA(xx∗) is connected. This implies σB(xx∗) = σA(xx∗) ⊆ (0,∞).
Hence (xx∗)−1 ∈ B and consequently x−1 = x∗(xx∗)−1 ∈ B. ¤

Remark 3.7. We are now in a position to explain the connection
between the three theorems stated in the introduction. In fact, as
explained below each of these theorems is a special case of Thorem 3.6.

(1) Let A = C(Γ), where Γ denotes the unit circle and B be the set
of continuous functions in A with absolutely convergent Fourier
series. We have already seen in Example 2.3 that A is a Banach
algebra. It is routine to check that B is a closed subalgebra of A.
The map f → f , where f denotes the complex conjugate of f ,
is an involution on A making it a B∗− algebra. Also, it is easy
to prove that if the Fourier series of f converges absolutely, then
so does that of f . In other words, B satisfies the hypotheses
of Theorem 3.6 and is hence an inverse-closed subalgebra of A.
This is Wiener’s theorem (Thorem 1.1).

(2) Let A = BL(`2(Z)) and B be the set of all matrices satisfying
the off diagonal decay conditions given in Jaffard’s theorem
(Thorem1.2) . Then A is a Banach algebra, as seen in Example
2.4. It requires some work to check that B is a closed subalgebra
of A. Next, for T ∈ A, let T ∗ denote the adjoint of T . Then
the map T → T ∗ is an involution on A and A is B∗ − algebra
with respect to this involution. This is well known and can
be found in many books, for example, [7], [8]. Further, it is
also well known that if αi,j is the (i, j)th entry of the matrix of
T , then the (i, j)th entry of the matrix of T ∗ is αj,i. Hence if
T satisfies the off diagonal decay conditions, then so does T ∗.
Thus B satisfies the hypotheses of Theorem 3.6 and is hence an
inverse-closed subalgebra of A. This is precisely the statement
of Jaffard’s theorem (Theorem 1.2).

(3) Let A = BL(`2(Z)) and B be the set of all band dominated
matrices. Then, as above, A is B∗ − algebra and B is a closed
subalgebra of A. Also, if T ∈ A is band dominated, then so is
T ∗. Thus again by Therem 3.6, it follows that B is an inverse-
closed subalgebra of A. This implies Theorem 1.4.
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