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LINEAR MAPS PRESERVING PSEUDOSPECTRUM AND
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Communicated by K. Jarosz

Abstract. We discuss properties of pseudospectrum and condition spectrum
of an element in a complex unital Banach algebra and its ε-perturbation. Sev-
eral results are proved about linear maps preserving pseudospectrum/ condition
spectrum. These include the following:
(1) Let A,B be complex unital Banach algebras and ε > 0. Let Φ : A → B

be an ε-pseudospectrum preserving linear onto map. Then Φ preserves
spectrum. If A and B are uniform algebras, then, Φ is an isometric
isomorphism.

(2) Let A,B be uniform algebras and 0 < ε < 1. Let Φ : A → B be
an ε-condition spectrum preserving linear map. Then Φ is an ε

′
-almost

multiplicative map, where ε, ε
′
tend to zero simultaneously.

1. Introduction

Let A be a complex Banach algebra with unit 1. We shall identify λ.1 with λ.
We recall that the spectrum of an element a ∈ A is defined as

σ(a) =
{
λ ∈ C : λ− a /∈ A−1

}
,

where A−1 is the set of all invertible elements of A. The spectral radius of an
element a is defined as

r(a) = sup{|λ| : λ ∈ σ(a)}.
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There are several extensions and generalizations of the concept of spectrum.
These include the Ransford’s generalized spectrum [18], ε-pseudospectrum [21]
and the ε-condition spectrum [13]. Unlike the spectrum, which is a purely alge-
braic concept, both the ε-pseudospectrum and ε-condition spectrum depend on
the norm. Also both these sets contain the spectrum as a subset.

Linear preserver problems (LPP) is an active research area in matrix and
operator theory. A brief discussion on LPP can be found in [3]. The monograph
by Molnar [15] contains a wealth of information about such problems. The most
popular among these is the problem of characterizing spectrum preserving maps,
studied by many authors [14, 7, 20]. Let X, Y be Banach spaces, BL(X) denote
the algebra of all bounded linear operators on X and X∗ denote the dual of X.
Jafarian and Sourour proved [7] that a spectrum preserving linear map Φ from
BL(X) onto BL(Y ) is either of the form Φ(T ) = ATA−1, T ∈ BL(X) for an
isomorphism A from X onto Y or of the form Φ(T ) = BT ∗B−1, T ∈ BL(X) for
an isomorphism B of X∗ onto Y . Thus Φ is multiplicative or anti-multiplicative.

In this paper we study the linear maps which preserve ε-pseudospectrum and
ε-condition spectrum between complex unital Banach algebras. One of the sur-
prises here is that it turns out that a map preserving ε-pseudospectrum also
preserves spectrum (Theorem 3.10). In many cases such a map simply becomes
an isometric isomorphism (Remark 3.12).
In section 2, we give definitions of ε-pseudospectrum, ε-condition spectrum, ε-
almost multiplicative map and ε-isometry. We establish relations between pseu-
dospectrum and condition spectrum of an element in a complex unital Banach
algebra (Proposition 2.5, 2.6). In Section 3, we prove that any linear map between
complex unital Banach algebras which preserves ε-pseudospectrum also preserves
spectrum (Theorem 3.10). We also prove an analogue of the Gleason–Kahane–
Zelazko theorem for ε-pseudospectrum (Theorem 3.13). In section 4, we discuss
ε-condition spectrum preserving maps in complex unital Banach algebras. We
establish that ε-condition spectrum is closely related to ε-almost multiplicative
map (Theorem 4.4). In section 5, we study ε-perturbation of a complex unital
Banach algebra. We prove various properties and relations between spectrum,
pseudospectrum and condition spectrum of an element in a Banach algebra and
its ε-perturbation.

2. Preliminaries

In this section we introduce some definitions and terminology used in this paper.
A relation connecting pseudospectrum and condition spectrum of an element in a
complex unital Banach algebra is given. We also show that a small perturbation
of an isomorphism is an almost multiplicative map.

Definition 2.1. (ε-pseudospectrum) Let A be a complex unital Banach algebra
with unit 1 and ε > 0. The ε-pseudospectrum of an element a ∈ A is denoted by
Λε(a) and is defined as,

Λε(a) :=

{
λ ∈ C : ‖(λ− a)−1‖ ≥ 1

ε

}
,
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with the convention that ‖(λ− a)−1‖ = ∞ if λ− a is not invertible.

Note that because of this convention, σ(a) ⊆ Λε(a) for every ε > 0. For more
information on ε-pseudospectrum one may refer to [21].

Definition 2.2. (ε-condition spectrum) Let A be a complex unital Banach alge-
bra with unit 1 and 0 < ε < 1. The ε-condition spectrum of an element a ∈ A is
denoted by σε(a) and is defined as,

σε(a) :=

{
λ ∈ C : ‖λ− a‖‖(λ− a)−1‖ ≥ 1

ε

}
,

with the convention that ‖λ− a‖‖(λ− a)−1‖ = ∞, if λ− a is not invertible.

Here also σ(a) ⊆ σε(a) for 0 < ε < 1. One may refer to [13] for examples and
elementary properties of the ε-condition spectrum.

Definition 2.3. Let A, ε be as in Definition 2.2. The ε-condition spectral radius
rε(a) of an element a ∈ A is defined as

rε(a) := sup{|λ| : λ ∈ σε(a)}.

Remark 2.4. Let A, ε be as in Definition 2.2 then,

r(a) ≤ rε(a) ≤ 1 + ε

1− ε
‖a‖.

(see Theorem 2.9 of [13]).

Next two propositions establish a relationship between condition spectrum and
pseudospectrum of an element in a complex unital Banach algebra. These propo-
sitions provide an answer to a question raised by the authors in [1] (see Remark
4.4 of [1]).

Proposition 2.5. Let A be a complex Banach algebra with unit 1, a ∈ A and
0 < ε < 1. Then

σε(a) ⊆ Λ 2ε‖a‖
1−ε

(a) .

Proof. Let λ ∈ σε(a). Then |λ| ≤ (1 + ε)‖a‖
1− ε

and hence

‖λ− a‖ ≤ |λ|+ ‖a‖ ≤ (1 + ε)‖a‖
1− ε

+ ‖a‖ =
2‖a‖
1− ε

.

Since λ ∈ σε(a), we have

‖λ− a‖‖(λ− a)−1‖ ≥ 1

ε
.

Thus

‖(λ− a)−1‖ ≥ 1

ε‖λ− a‖

≥ 1− ε

2ε‖a‖
.

�
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Proposition 2.6. Let A be a complex Banach algebra with unit 1 and ε > 0.
Suppose a ∈ A is not a scalar multiple of 1 and let
Ma := inf{‖z − a‖ : z ∈ C}. Then Λε(a) ⊆ σ ε

Ma
(a).

Proof. Suppose λ ∈ Λε(a). Then,

‖(λ− a)−1‖ ≥ 1

ε
.

Also,
‖λ− a‖ ≥ inf{‖z.1− a‖ : z ∈ C} = Ma > 0.

Hence

‖λ− a‖‖(λ− a)−1‖ ≥ Ma

ε
.

�

Remark 2.7. If a = µ.1 for some µ ∈ C, then ε-condition spectrum of a is the
singleton set {µ} and ε-pseudospectrum is the closed ball with center µ and radius
ε. Thus the condition on a can not be dropped from the above proposition.

Definition 2.8. Let A, B be complex Banach algebras and ε > 0. A linear map
Φ : A → B is said to be

(1) an ε-almost multiplicative map, if

‖Φ(ab)− Φ(a)Φ(b)‖ ≤ ε‖a‖‖b‖ for all a, b ∈ A.

(2) an ε-almost anti-multiplicative map, if

‖Φ(ab)− Φ(b)Φ(a)‖ ≤ ε‖a‖‖b‖ for all a, b ∈ A.

(3) an ε-almost Jordan multiplicative map, if

‖Φ(a2)− Φ(a)2‖ ≤ ε‖a‖2 for all a ∈ A.

See [8] for more information on such maps. In [8] ε-almost multiplicative maps
are called ε-isomorphisms. We have avoided this terminology because the word
isomorphism usually includes the assumption of injectivity. We have not made
such an assumption here. If B = C, Φ is called ε-almost multiplicative linear
functional. It is obvious that every ε-almost multiplicative or ε- almost anti-
multiplicative map is ε- almost Jordan multiplicative map. See [1] for a detailed
discussion of the converse of this, called approximate Herstein’s theorem.

Definition 2.9. (ε-isometry) Let A, B be complex Banach spaces and ε > 0. A
linear continuous injective map Φ : A → B is said to be an ε-isometry , if

‖Φ‖ ≤ 1 + ε and ‖Φ−1‖ ≤ 1 + ε.

One may refer to [8] for more information on ε- isometry.

Example 2.10. (ε-almost multiplicative map) Consider C2×2 as the set of all

bounded linear maps on (C2, ‖ · ‖2). For 0 < ε <
1

4
consider Φ : C2×2 → C2×2

defined by

Φ(

[
a11 a12

a21 a22

]
) =

[
a11 a12(1 + ε)

a21(1 + ε) a22

]
.
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We can write the above as Φ(A) = A + Ψ(A), where Ψ : C2×2 → C2×2 is a linear
map given by

Ψ(

[
a11 a12

a21 a22

]
) =

[
0 a12ε

a21ε 0

]
.

So that ‖Ψ‖ ≤ ε. Now for A, B ∈ C2×2 we have

‖Φ(A.B)− Φ(A).Φ(B)‖ = ‖Ψ(A.B)−Ψ(A).B − A.Ψ(B)−Ψ(A).Ψ(B)‖
≤ 4‖Ψ‖‖A‖‖B‖
≤ 4ε‖A‖‖B‖.

Thus Φ is a 4ε-almost multiplicative map.

The following proposition shows that a small perturbation of a homomorphism
is an almost multiplicative map.

Proposition 2.11. Let A, B be complex Banach algebras, Φ : A → B be a
continuous homomorphism, 0 < ε < 1 and Ψ : A → B a bounded linear map with

‖Ψ‖ ≤ min

{
ε

4
,

ε

4‖Φ‖

}
. Then Φ + Ψ is an ε-almost multiplicative map.

Proof. For a, b ∈ A we have,

‖(Φ + Ψ)(ab)− (Φ + Ψ)(a)(Φ + Ψ)(b)‖
= ‖Φ(ab) + Ψ(ab)− (Φ(a) + Ψ(a))(Φ(b) + Ψ(b))‖
= ‖Φ(ab)− Φ(a)Φ(b) + Ψ(ab)−Ψ(a)Ψ(b)− Φ(a)Ψ(b)−Ψ(a)Φ(b)‖
≤ (‖Ψ‖+ ‖Ψ‖2 + 2‖Φ‖‖Ψ‖)‖a‖‖b‖
≤ ε‖a‖‖b‖.

�

Remark 2.12. A special case of this when B = C was proved by Johnson [10].
It is also easy to prove in a similar way that if Φ is an anti-homomorphism then
Φ+Ψ is ε-almost anti-multiplicative and if Φ is a Jordan multiplicative map then
Φ + Ψ is ε-almost Jordan multiplicative. This raises a natural question: Is every
ε-almost multiplicative map close to a multiplicative map? This is true for certain
pairs of Banach algebras known as AMNM pairs introduced by Johnson [11]. See
also [1] for a discussion of similar questions in case of anti-homomorphisms.

3. Linear maps preserving pseudospectrum

We begin this section by giving sufficient conditions for a map between com-
plex unital Banach algebras to preserve pseudospectrum and condition spectrum.
Then we prove that every pseudospectrum preserving map between complex uni-
tal Banach algebras preserves spectrum also. This has some interesting conse-
quences. This section also contains an analogue of the Gleason–Zelazko theorem
for pseudospectrum.

Theorem 3.1. Let A, B be complex Banach algebras with units 1A, 1B respec-
tively. Suppose Φ : A → B is

(1) bijective;
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(2) linear;
(3) unital (i.e Φ(1A) = 1B);
(4) either multiplicative (that is, Φ(ab) = Φ(a)Φ(b) for all a, b ∈ A) or anti-

multiplicative (that is, Φ(ab) = Φ(b)Φ(a) for all a, b ∈ A);
(5) isometry.

Then

Λε(a) = Λε(Φ(a)) for all a ∈ A, ε > 0, and

σε(a) = σε(Φ(a)) for all a ∈ A, 0 < ε < 1.

Proof. Let a ∈ A and ε > 0. If λ ∈ Λε(a), then

‖(λ− a)−1‖ ≥ 1

ε
.

Since Φ is an isometry,

‖Φ[(λ− a)−1]‖ ≥ 1

ε
.

Since Φ is multiplicative(or anti-multiplicative) and unital, inverses are preserved.
Hence

‖[Φ(λ− a)]−1‖ ≥ 1

ε
.

Since Φ is unital and linear,

‖[λ− Φ(a)]−1‖ ≥ 1

ε
.

Hence λ ∈ Λε(Φ(a)) and Λε(a) ⊆ Λε(Φ(a)). By symmetry we can show that
Λε(Φ(a)) ⊆ Λε(a). The same argument also shows that σε(a) = σε(Φ(a)) for all
a ∈ A, because ‖λ− a‖ = ‖λ− Φ(a)‖. �

Remark 3.2. If Φ is assumed to be continuous(instead of isometry) in Theorem
3.1, then we can prove Λ ε

‖Φ‖
(Φ(a)) ⊆ Λε(a) and σ ε

‖Φ‖2
(Φ(a)) ⊆ σε(a).

Theorem 3.3. Let T be a Laurent operator on l2(Z) with a continuous symbol
f . Then for each ε > 0 Λε(T ) = Λε(f) and for 0 < ε < 1 σε(T ) = σε(f), where f
is regarded as an element of C(Γ), where Γ is the unit circle.

Proof. Let A be the Banach algebra of all Laurent operators on l2(Z) (see [4, 5])
with continuous symbols and B = C(Γ). First note that if T ∈ A and T is
invertible in l2(Z), then T−1 ∈ A [5]. Hence the ε-pseudospectrum of T regarded
as an element of A is the same as the ε-pseudospectrum of T regarded as an
element of BL(l2(Z)). The same can be said about ε-condition spectrum. The
map Φ : A → B defined by,

Φ(T ) = symbol(T ),

is linear, bijective, unital, multiplicative and isometry([5], Theorem 1.27, 1.28).
Hence the result follows from Theorem 3.1. �
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Remark 3.4. The above theorem gives a very useful technique to compute the
ε-pseudospectra and ε-condition spectra of Laurent operators with continuous
symbols. See Example 2.13 in [13] where the ε-condition spectrum of the bilateral
shift V on l2(Z) is computed as

σε(V ) =

{
λ ∈ C :

1− ε

1 + ε
≤ |λ| ≤ 1 + ε

1− ε

}
.

Using the calculations given there we can show that the ε-pseudospectrum is
given by

Λε(V ) = {λ ∈ C : 1− ε ≤ |λ| ≤ 1 + ε}.

Remark 3.5. If A, B are uniform algebras, then condition(4) can be dropped from
Theorem 3.1 in view of Nagasawa’s theorem [16].

Definition 3.6. (standard operator algebra) A standard operator algebra R on
a Banach space X is a Banach subalgebra of BL(X) which contains the identity
and the ideal of all finite rank operators.

Corollary 3.7. Let X, Y be Banach spaces and A, B be standard operator algebras
on X, Y respectively. Let Φ : A → B be a linear, bijective, spectrum preserving
isometry, then Φ preserves ε-pseudospectrum for every ε > 0. Also Φ preserves
ε-condition spectrum for every 0 < ε < 1.

Proof. The only hypothesis of Theorem 3.1 not included here is (4). This follows
from a result of Sourour [20]. �

Remark 3.8. In [2], the authors introduce thirteen parts of the spectrum of an
operator and show that if Φ preserves any one of the thirteen parts of the spec-
trum, then Φ is multiplicative or anti-multiplicative. In view of this Corollary
3.7 can be strengthened by assuming that Φ preserves one of the thirteen parts.

Remark 3.9. A similar result for the case When A = B = Cn×n was proved in
Theorem 3.2 [9].

Theorem 3.10. Let A, B be complex Banach algebras and ε > 0. Let Φ : A → B
be an ε-pseudospectrum preserving linear onto map. Then Φ preserves spectra of
elements.

Proof. We have
Λε(a) = Λε(Φ(a)) for all a ∈ A.

Suppose λ /∈ σ(a), choose t > ε‖(λ− a)−1‖. Then

‖[t(λ− a)]−1‖ <
1

ε
.

Thus
tλ /∈ Λε(ta) = Λε(Φ(ta)) ⊇ σ(Φ(ta)) = tσ(Φ(a))

so
λ /∈ σ(Φ(a)).

Therefore
σ(Φ(a)) ⊆ σ(a).
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In a similar way we can prove that

σ(a) ⊆ σ(Φ(a)).

Hence

σ(Φ(a)) = σ(a).

�

Corollary 3.11. Let BL(X), BL(Y ) be the algebra of all bounded linear oper-
ators on the Banach spaces X, Y respectively. Let Φ : BL(X) → BL(Y ) be
an ε- pseudospectrum preserving linear onto map. Then Φ(T ) = ATA−1 for an
isomorphism A of X onto Y or Φ(T ) = BT ∗B−1 for an isomorphism B of X∗

onto Y , where X∗ denote the dual of X. In particular Φ is multiplicative or
anti-multiplicative.

Proof. Follows by Theorem 3.10 and a result of Jafarian and Sourour [7]. �

Remark 3.12. In Theorem 3.10, if A and B are uniform algebras, then T is an
isometry, because for each a ∈ A, ‖T (a)‖ = r(T (a)) = r(a) = ‖a‖. But then T
becomes an isomorphism in view of Nagasawa’s theorem [8, 16]. Thus T is an
isometric isomorphism.

The following theorem is analogous to the classical Gleason–Zelazko theorem
[22], [17].

Theorem 3.13. Let A be a complex commutative Banach algebra with unit 1
and ε > 0. Let φ : A → C be a linear functional such that φ(1) = 1 and
φ(a) ∈ Λε(a) for all a ∈ A. Then φ is multiplicative.

Proof. We claim that φ(a) ∈ σ(a) for all a ∈ A. Let φ(a) = λ. If λ /∈ σ(a)

then λ − a ∈ A−1. Choose t > ε‖(λ − a)−1‖, then ‖(λt− ta)−1‖ <
1

ε
. Thus

tλ = φ(ta) /∈ Λε(ta). This gives a contradiction. Now the conclusion follows from
the Gleason–Zelazko theorem. �

Remark 3.14. In Theorem 3.13, if we replace the hypothesis “φ(a) ∈ Λε(a)′′ by
“φ(a) ∈ σε(a)′′, then φ is only almost multiplicative. This is proved in [12].

Theorem 3.15. Let A, B be complex unital Banach algebras and Φ : A → B
be an ε-pseudospectrum preserving linear map for some ε > 0. Suppose Φ is
multiplicative or anti-multiplicative. Then Φ preserves norms of all invertible
elements of A.

Proof. Suppose there exist a ∈ A−1 such that ‖Φ(a−1)‖ 6= ‖a−1‖. Assume
‖a−1‖ < ‖Φ(a−1)‖, choose t > 0 such that

ε‖a−1‖ < t ≤ ε‖Φ(a−1)‖ = ε‖[Φ(a)]−1‖.

then

‖(ta)−1‖ <
1

ε
.
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Thus 0 /∈ Λε(ta). But

‖[Φ(ta)]−1‖ ≥ 1

ε

implies 0 ∈ Λε(Φ(ta)). This contradicts the fact that Φ preserves ε-pseudospectrum.
�

Corollary 3.16. Let A = Mn(C) the algebra of all n×n matrices. Let Φ : A → A
be a linear, bijective map. Then the following are equivalent.

(1) Φ preserves ε-pseudospectrum for some ε > 0.
(2) Φ is an isometric isomorphism or anti-isomorphism.
(3) Φ preserves δ-pseudospectrum for every δ > 0.

Proof. (1) ⇒ (2), By Theorem 3.10, if Φ preserves ε-pseudospectrum it preserves
spectrum. Hence by Corollary 3.11, Φ is an isomorphism or anti-isomorphism.
Since the set of all invertible elements is dense in Mn(C) [6], Theorem 3.15 implies
that Φ is an isometry.
(2) ⇒ (3) by Theorem 3.1.
(3) ⇒ (1), trivial. �

Corollary 3.17. Let A, B be complex uniform algebras. Let Φ : A → B be a
linear bijective map. Then the following are equivalent.

(1) Φ preserves spectrum
(2) Φ is an isometric isomorphism.
(3) Φ preserves ε-pseudospectrum for every ε > 0.
(4) Φ preserves ε-pseudospectrum for some ε > 0.

Proof. (1) ⇒ (2), Suppose Φ preserves spectrum. Since A is a uniform algebra,
we have r(a) = ‖a‖ for all a ∈ A. So Φ is an isometry and hence by Nagasawa
Theorem Φ is an isomorphism.
(2) ⇒ (3) by Theorem 3.1.
(3) ⇒ (4), trivial.
(4) ⇒ (1), follows from Theorem 3.10. �

Remark 3.18. In Remark 4.4 of [1] Alaminos et.al. were unable to get how The-
orem 4.2 of [1] is related to Theorem 5 of [12]. We can now comment on this
relationship. Recall that in Theorem 5 of [12] it is assumed that A is a complex
commutative Banach algebra, 0 < ε < 1

3
and Φ(a) ∈ σε(a) for all a ∈ A. In

view of Proposition 2.5, this implies Φ(a) ∈ σε(a) ⊆ Λ 2ε
1−ε

(a) for a ∈ A with

‖a‖ = 1. This is the hypothesis of Theorem 4.2 of [1] and the conclusion is that
Φ is δ-almost multiplicative for a suitable δ > 0. Thus Theorem 5 of [12] follows
from Theorem 4.2 of [1].

4. Almost multiplicative linear maps and condition spectrum

In [8] Jarosz proved that every almost multiplicative linear functional is con-
tinuous. A more general result is proved in [1] (see Proposition 3.1 of [1]). Here
we prove the continuity of an almost multiplicative linear map using the con-
dition spectrum. We discuss maps which preserve condition spectrum between
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complex unital Banach algebras. We show that there is a close relation between
the condition spectrum and almost multiplicative maps.

Definition 4.1. (Spectrally normed algebra) Let A be a complex Banach algebra
with unit 1. A is said to be a spectrally normed algebra if there exist a k ≥ 1 such
that ‖a‖ ≤ k r(a) for all a ∈ A. Here r(a) denotes the spectral radius of a.

See [17] for more information on spectrally normed algebras.

Theorem 4.2. Let A, B be unital Banach algebras and 0 < ε < 1. Let Φ :
A → B be a unital (i.e Φ(1) = 1) ε-almost multiplicative or ε-almost anti-
multiplicative linear map. Then σ(Φ(a)) ⊆ σε(a) for all a ∈ A. In particular,

r(Φ(a)) ≤ rε(a) ≤ 1 + ε

1− ε
‖a‖. If, in addition, B is also spectrally normed, then Φ

is continuous and ‖Φ‖ ≤ k(1 + ε)/(1− ε) for some constant k > 0.

Proof. Let λ /∈ σε(a) then λ− a is invertible and

‖(λ− a)‖‖(λ− a)−1‖ <
1

ε
.

Thus,

‖1− Φ(λ− a)Φ((λ− a)−1)‖ = ‖Φ(1)− Φ(λ− a)Φ(λ− a)−1‖
= ‖Φ((λ− a)(λ− a)−1)− Φ(λ− a)Φ(λ− a)−1‖
≤ ε‖λ− a‖‖(λ− a)−1‖
< 1.

Hence Φ(λ − a)Φ((λ − a)−1) is invertible and therefore, Φ(λ − a) = λ − Φ(a) is
invertible, i.e λ /∈ σ(Φ(a)).
If B is spectrally normed, then there exist k > 0 such that

‖b‖ ≤ k r(b) for all b ∈ B .

Hence for all a ∈ A,

‖Φ(a)‖ ≤ k r(Φ(a)) ≤ k
1 + ε

1− ε
‖a‖.

�

Remark 4.3. A special case of this result, when B = C, was proven in ([12],
Theorem 3).

Theorem 4.4. Let A, B be complex Banach algebras and 0 < ε < 1. Let Φ :
A → B be an ε-condition spectrum preserving linear map. Then,
(i) Φ is injective and unital.

(ii) If B is a uniform algebra, then Φ is continuous and ‖Φ‖ ≤ 1 + ε

1− ε
.

(iii) If A, B are both uniform algebras and Φ is onto then Φ is invertible. In fact

it is
2ε

1− ε
-isometry and also ε′-almost multiplicative map, where ε, ε′ tend to zero

simultaneously.
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Proof. (i) Φ(a) = 0 =⇒ σε(a) = σε(Φ(a)) = σε(0) = {0} =⇒ a = 0(see [13],
Corollary 3.2). Also

σε(Φ(1)) = σε(1) = {1} =⇒ Φ(1) = 1.

(ii) Since Φ preserves ε-condition spectrum,

σ(Φ(a)) ⊆ σε(Φ(a)) = σε(a) for all a ∈ A.

Since B is a function algebra, we get

‖Φ(a)‖ = r(Φ(a)) ≤ 1 + ε

1− ε
‖a‖ for all a ∈ A (by Theorem 4.2).

(iii) From (ii) we have,

‖Φ‖ ≤ 1 + ε

1− ε
= 1 +

2ε

1− ε
.

In a similar way we can prove that

‖Φ−1‖ ≤ 1 + ε

1− ε
= 1 +

2ε

1− ε
.

Hence by a result due to Jarosz [8]; Φ is an ε′-almost multiplicative map such
that ε, ε′ tends to zero simultaneously. �

Theorem 4.5. Let X and Y be super reflexive Banach spaces and Φ : BL(X) →
BL(Y ) be a bijective linear map. Then for every ε with 0 < ε < 1 there exist
δ > 0 such that if σ(Φ(T )) ⊆ σδ(T ) for all T ∈ BL(X), then Φ is ε-almost
multiplicative or ε-almost anti-multiplicative. In particular, if X = Y = H,
where H is a separable Hilbert space, then ‖Φ− Ψ‖ < ε for some automorphism
or anti-automorphism Ψ : BL(H) → BL(H).

Proof. By Proposition 2.5 σ(Φ(T )) ⊆ Λ 2δ
1−δ

(T ) for T ∈ BL(X) with ‖T‖ = 1.

Now the conclusions follows from Theorem 5.8 and 5.10 of [1]. �

5. Algebraic perturbation and condition spectrum

In this section we consider an algebraic ε-perturbation on a Banach algebra.
We prove various results connecting spectrum, pseudospectrum and condition
spectrum of an element in a complex Banach algebra and its ε-perturbation.

Definition 5.1. Let (A, ·, ‖ · ‖) be a complex Banach algebra with unit 1 and
ε > 0. By an algebraic ε-perturbation of A we mean any multiplication ∗ on the
vector space A such that (A, +, ∗) is a complex algebra and,

‖a ∗ b− a · b‖ ≤ ε‖a‖‖b‖ for all a, b ∈ A.

See [8] for more information on ε-perturbation.

Theorem 5.2. Let (A, ·, ‖ · ‖) be a complex Banach algebra and ∗ be an algebraic
ε-perturbation. Assume both multiplications have the same unit 1. Then the
following hold:

(1) The multiplication ∗ : A× A → A is continuous. It induces a norm |||·|||
on A so that (A, ∗, |||·|||) is a Banach algebra.

(2) ‖a‖ ≤ |||a||| ≤ (1 + ε)‖a‖ for all a ∈ A.
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(3) The multiplication · is an algebraic ε(1 + ε)-perturbation of (A, ∗, |||·|||).

Proof. We refer to [19] for a proof of (1) and (2). (3) can be proved as follows.
For all a, b ∈ A,

|||a ∗ b− a · b||| ≤ (1 + ε)‖a ∗ b− a · b‖
≤ ε(1 + ε)‖a‖‖b‖
≤ ε(1 + ε)|||a||| |||b||| .

Thus the multiplication · is an algebraic ε(1+ ε)-perturbation of (A, ∗, |||·|||). �

Corollary 5.3. Let A be a complex Banach algebra with unit 1 and ε > 0. Let

a ∈ A and ‖a‖ <
1

1 + ε
. Then 1−a is invertible in (A, ∗, |||·|||) and ‖(1−a)−1

∗ ‖ ≤
1

1− (1 + ε)‖a‖
, where a−1

∗ denote the inverse of a in the complex Banach algebra

(A, ∗, |||·|||). More generally let a ∈ A and ‖a‖ <
|λ|

1 + ε
, then λ − a is invertible

in (A, ∗, |||·|||) and ‖(λ− a)−1
∗ ‖ ≤

1

|λ| − (1 + ε)‖a‖
.

Proof. If a ∈ A and ‖a‖ <
1

1 + ε
then, |||a||| ≤ (1 + ε)‖a‖ < 1. Hence 1 − a is

invertible in (A, ∗, |||·|||). Also

‖(1− a)−1
∗ ‖ ≤ |||(1− a)−1

∗ |||

≤ 1

1− |||a|||

≤ 1

1− (1 + ε)‖a‖
.

�

Definition 5.4. Let A be a complex Banach algebra with unit 1 and ∗ be an
algebraic ε-perturbation with the same unit. For ε > 0, the ε-pseudospectrum of
an element a in the new Banach algebra (A, ∗, |||·|||) is defined as

Λ∗
ε(a) =

{
λ ∈ C : |||(λ− a)−1

∗ ||| ≥
1

ε

}
.

Definition 5.5. Let A be a complex Banach algebra with unit 1 and ∗ be an
algebraic ε-perturbation with same unit. For 0 < ε < 1, the ε-condition spectrum
of an element a in the new Banach algebra (A, ∗, |||·|||) is defined as

σ∗ε (a) =

{
λ ∈ C : |||λ− a||| |||(λ− a)−1

∗ ||| ≥
1

ε

}
.

Now we prove several relations connecting spectrum and condition spectrum
between the algebras (A, ·, ‖ · ‖) and (A, ∗, |||·|||).

Proposition 5.6. Let A be a complex Banach algebra with unit 1 and 0 < ε < 1.
Let ∗ be an ε-perturbation with the same unit, then σ(a) ⊆ σ∗ε (a)
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Proof. Note

‖a ∗ b− a.b‖ ≤ ε‖a‖‖b‖
≤ ε |||a||| |||b||| .

Thus the identity map I : (A, ∗, |||·|||) → (A, ·, ‖ · ‖) is an ε-almost multiplicative
map. Hence the conclusion follows from Theorem 4.2. �

Proposition 5.7. Let A be a complex Banach algebra with unit 1 and 0 < ε <√
5−1
2

. Let ∗ be an ε-perturbation with the same unit, then σ∗(a) ⊆ σε(1+ε)(a)

Proof. Since the multiplication · is an algebraic ε(1+ε)-perturbation on (A, ∗, |||·|||),
the result follows from Proposition 5.6. �

Next we obtain some interesting relations connecting condition spectrum of
elements in (A, ·, ‖ · ‖) and (A, ∗, |||·|||). The following results will be useful for
this purpose.

Lemma 5.8. Let A be a complex Banach algebra with unit 1 and 0 < ε < 1. Let
∗ be an ε-perturbation with the same unit. If λ /∈ σ∗ε (a), then λ − a is invertible
in (A, ·, ‖ · ‖) and

‖(λ− a)−1‖ ≤ ‖(λ− a)−1
∗ ‖

1− ε‖λ− a‖‖(λ− a)−1
∗ ‖

.

Proof. Let λ /∈ σ∗ε (a). By proposition 5.6, λ−a is invertible in (A, ·, ‖·‖) . Denote
b = λ− a. Then

‖1− b · b−1
∗ ‖ = ‖b ∗ b−1

∗ − b · b−1
∗ ‖

≤ ε‖b‖‖b−1
∗ ‖

≤ ε|||b||| |||b−1
∗ |||

< 1 .

Hence b · b−1
∗ is invertible in (A, ·, ‖ · ‖) and

‖(b · b−1
∗ )−1‖ ≤ 1

1− ‖1− b · b−1
∗ ‖

≤ 1

1− ε‖b‖‖b−1
∗ ‖

.

Hence

‖b−1‖ = ‖b−1
∗ · (b · b−1

∗ )−1‖
≤ ‖b−1

∗ ‖‖(b · b−1
∗ )−1‖

≤ ‖b−1
∗ ‖

1− ε‖b‖‖b−1
∗ ‖

.

�

Theorem 5.9. Let A be a complex Banach algebra with unit 1 and 0 < ε < 1.
Let ∗ be an ε-perturbation with the same unit. Then σ(t−1)ε(a) ⊆ σ∗tε(a) for all t

satisfying 1 < t <
1

ε
. In particular σε(a) ⊆ σ∗2ε(a)
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Proof. Let 1 < t <
1

ε
and λ /∈ σ∗tε(a) ⊇ σ∗ε (a). Then by Lemma 5.8,

‖(λ− a)−1‖ ≤ ‖(λ− a)−1
∗ ‖

1− ε‖λ− a‖‖(λ− a)−1
∗ ‖

.

Hence

‖λ− a‖‖(λ− a)−1‖ ≤ ‖λ− a‖‖(λ− a)−1
∗ ‖

1− ε‖λ− a‖‖(λ− a)−1
∗ ‖

≤ |||λ− a||| |||(λ− a)−1
∗ |||

1− ε|||λ− a||| |||(λ− a)−1
∗ |||

<
1

(t− 1)ε
.

�

Corollary 5.10. Let A be a complex Banach algebra with unit 1 and 0 < ε <√
5−1
2

. Let ∗ be an ε-perturbation with the same unit. If λ /∈ σε(1+ε)(a), then λ− a
is invertible in (A, ∗, |||·|||) and

‖(λ− a)−1
∗ ‖ ≤

‖(λ− a)−1‖
1− ε(1 + ε)3‖λ− a‖‖(λ− a)−1‖

.

Proof. Let λ /∈ σε(1+ε)(a), denote b = λ − a. If ∗ is an algebraic ε-perturbation
on (A, ·, ‖ · ‖), then the multiplication · is an algebraic ε(1 + ε)-perturbation on
(A, ∗, |||·|||). Then by Lemma 5.8,

|||b−1
∗ ||| ≤

|||b−1|||
1− ε(1 + ε)|||b||| |||b−1|||

.

Since ‖x‖ ≤ |||x||| ≤ (1 + ε)‖x‖ for all x ∈ A, we get

‖b−1
∗ ‖ ≤

‖b−1‖
1− ε(1 + ε)3‖b‖‖b−1‖

.

�

Corollary 5.11. Let A be a complex Banach algebra with unit 1 and 0 < ε < 1.
Let ∗ be an ε-perturbation on A with the same unit. Then σ∗ε(t−1)

1+ε

(a) ⊆ σtε(1+ε)(a)

for all t > 1. In particular, σ∗ ε
1+ε

(a) ⊆ σ2ε(1+ε)(a).

Proof. Let t > 1 and λ /∈ σtε(1+ε)(a) ⊇ σε(1+ε)(a). Then by Corollary 5.10 λ− a is
invertible in (A, ∗, |||·|||) and

|||(λ− a)−1
∗ ||| ≤

|||(λ− a)−1|||
1− ε(1 + ε)|||λ− a||| |||λ− a−1|||

.
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Hence,

|||λ− a||| |||(λ− a)−1
∗ ||| ≤ |||λ− a||| |||(λ− a)−1|||

1− ε(1 + ε)|||λ− a||| |||λ− a−1|||

≤ (1 + ε)2‖λ− a‖ ‖(λ− a)−1‖
1− ε(1 + ε)3‖λ− a‖ ‖λ− a−1‖

<
1 + ε

(t− 1)ε
.

�
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