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Abstract
We define and discuss properties of the class of unbounded operators which attain

minimum modulus. We establish a relationship between this class and the class of

norm attaining bounded operators and compare the properties of both. Also we

define absolutely minimum attaining operators (for not necessarily bounded) and

characterize injective absolutely minimum attaining operators as those with com-

pact generalized inverse. We give several consequences, one of those is that every

such operator has a non trivial hyperinvariant subspace.

Keywords Closed operator � Minimum modulus � Absolutely minimum

attaining operator � Invariant subspace � Lomonosov theorem � Generalized
inverse
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1 Introduction

The class of norm attaining operators on Banach spaces is well studied by several

authors in the literature. It is known that the class of norm attaining operators is

dense in the space of all bounded linear operators on a Hilbert space with respect to

the operator norm [1, Theorem 1]. For more details on norm attaining operators on

Banach spaces, we refer to [2, 3] and [4] and references therein.
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Every compact operator is norm attaining. In fact, restricted to any non zero

closed subspace of a Hilbert space, it remains as compact and hence norm attaining.

Motivated by this observation, Carvajal and Neves [5] introduced a class of

operators, called the absolutely norm attaining operators. A Characterization of such

operators on separable Hilbert spaces, in a particular case, is given in [6] and a

complete characterization on arbitrary Hilbert space is discussed in [7]. Many

properties of these operators resemble the properties of compact operators.

It is a natural question to ask what happens if the norm is replaced by the

minimum modulus. This leads to the definition of minimum attaining operators.

Analogously, we can define absolutely minimum attaining operators. In a recent

paper Carvajal and Neves [8], studied bounded operators between two different

Hilbert spaces having such property. The structure of positive absolutely minimum

attaining operators is described in [9]. This concept is also applicable to linear

operators, that are not bounded.

In this article, we introduce the minimum attaining property for densely defined

closed operators (possibly not bounded). We prove several characterizations of such

operators. We also prove the dual relation between the norm attaining bounded

operators and the minimum attaining closed operators. Next, we introduce the

absolutely minimum attaining operators and prove a representation theorem for the

injective absolutely minimum attaining operators. Furthermore, we observe that this

class is exactly the same as the class of densely defined closed operators whose

generalized inverse is compact. Finally, we show that these operators possess a non

trivial hyperinvariant subspace.

We organize the article as follows: In the second section we provide basic results

which will be used throughout the article. In the third section, we define minimum

attaining property for densely defined closed operators and prove several

characterizations. Some of the results in this section generalize the existing results

of bounded operators and some of them are new. In the fourth section, we define

absolutely minimum attaining operators and show that all such operators have a

closed range. In particular, we show that an injective densely defined closed

operator is absolutely minimum attaining if and only if its Moore–Penrose inverse is

compact. Using this result, we deduce several consequences. One of the important

consequences is that every such operator has a non trivial hyperinvariant subspace.

2 Preliminaries

In this section we introduce some basic notations, definitions and results that are

needed to prove our main results.

Throughout the article we consider infinite dimensional complex Hilbert spaces

which will be denoted by H;H1;H2 etc. The inner product and the induced norm are

denoted by h�i and ||.||, respectively. Let T be a linear operator with domain D(T), a

subspace of H1 and taking values in H2. If D(T) is dense in H1, then T is called a

densely defined operator. The graph G(T) of T is defined by

GðTÞ :¼ fðTx; xÞ : x 2 DðTÞg � H1 � H2. If G(T) is closed, then T is called a
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closed operator. Equivalently, T is closed if and only if for any sequence ðxnÞ in

D(T) such that xn ! x 2 H1 and Txn ! y 2 H2, then x 2 DðTÞ and Tx ¼ y.

By the closed graph Theorem [10], an everywhere defined closed operator is

bounded. Hence the domain of an unbounded closed operator is a proper subspace

of a Hilbert space.

The space of all bounded operators between H1 and H2 is denoted by BðH1;H2Þ
and the class of all closed operators between H1 and H2 is denoted by CðH1;H2Þ. We

write BðH;HÞ ¼ BðHÞ and CðH;HÞ ¼ CðHÞ.
If T 2 CðH1;H2Þ, then the null space and the range space of T are denoted by

N(T) and R(T) respectively and the space CðTÞ :¼ DðTÞ \ NðTÞ? is called the

carrier of T. In fact, DðTÞ ¼ NðTÞ �? CðTÞ [11, page 340].

For a densely defined operator, there exists a unique linear operator (in fact, a

closed operator) T� : DðT�Þ ! H1, with

DðT�Þ :¼ fy 2 H2 : x ! hTx; yi for all x 2 DðTÞ is continuousg � H2

satisfying hTx; yi ¼ hx; T�yi for all x 2 DðTÞ and y 2 DðT�Þ. It is to be noted that T�

exists if and only if T is densely defined.

If S and T are closed operators with the property that DðTÞ � DðSÞ and Tx ¼ Sx

for all x 2 DðTÞ, then S is called the restriction of T and T is called an extension of

S. Furthermore, S ¼ T if and only if S � T and T � S.

If S 2 BðHÞ and T 2 CðHÞ, then we say S and T are commuting if ST � TS. That

is, DðSTÞ � DðTSÞ and STx ¼ TSx for all x 2 DðSTÞ.
A densely defined operator T 2 CðHÞ is said to be normal if T�T ¼ TT�, self-

adjoint if T ¼ T� and positive if hTx; xi� 0 for all x 2 DðTÞ.
If T is positive, then there exists a unique positive operator S such that T ¼ S2.

The operator S is called the positive square root of T and it is denoted by S ¼ T
1
2.

If T 2 CðH1;H2Þ is densely defined, then the operator jT j :¼ ðT�TÞ
1
2 is called the

modulus of T. There exists a unique partial isometry V : H1 ! H2 with the initial

space RðT�Þ and the final space RðTÞ such that T ¼ V jTj.
It can be verified that DðjT jÞ ¼ DðTÞ and NðjT jÞ ¼ NðTÞ and RðjT jÞ ¼ RðT�Þ.
Let T 2 CðHÞ be densely defined. The resolvent of T is defined by

qðTÞ :¼ fk 2 C : T � kI : DðTÞ ! H is invertible and ðT � kIÞ�1 2 BðHÞg

and

rðTÞ :¼ CnqðTÞ
rpðTÞ :¼ fk 2 C : T � kI : DðTÞ ! H is not one-to-oneg;

are called the spectrum and the point spectrum of T, respectively.

Let T 2 CðH1;H2Þ be densely defined. A subspace D of D(T) is called a core for

T if for any x 2 DðTÞ, there exists a sequence ðxnÞ 	 D such that limn!1 xn ¼ x and

limn!1 Txn ¼ Tx. In other words, D is dense in D(T) with respect to the graph

norm, which is defined by kjxkj :¼ kxk þ kTxk for all x 2 DðTÞ. It is a well known
fact that DðT�TÞ is a core for T (see [12, Proposition 3.18, page 47] for details).
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If M is a closed subspace of a Hilbert space H, then PM denotes the orthogonal

projection PM : H ! H with range M, and SM :¼ fx 2 M : kxk ¼ 1g is the unit

sphere of M. The orthogonal complement of a subspace N of H is denoted by N\.

We refer [10, 12–16] for the above basics of unbounded operators.

Here we recall definition and properties of the Moore–Penrose inverse (or

generalized inverse) of a densely defined closed operator that we need for our

purpose. We refer [11] for more details on this topic.

Let T 2 CðH1;H2Þ be densely defined. Then there exists a unique densely defined

operator Ty 2 CðH2;H1Þ with domain DðTyÞ ¼ RðTÞ �? RðTÞ? and has the

following properties:

(1) TTyy ¼ P
RðTÞy; for all y 2 DðTyÞ

(2) TyTx ¼ PNðTÞ?x; for allx 2 DðTÞ
(3) NðTyÞ ¼ RðTÞ?.

This unique operator Ty is called the Moore–Penrose inverse of T.

The following property of Ty is also well known.

For every y 2 DðTyÞ, let

LðyÞ :¼
n

x 2 DðTÞ : jjTx � yjj 
 jjTu � yjj for all u 2 DðTÞ
o
:

Here any u 2 LðyÞ is called a least square solution of the operator equation Tx ¼ y.

The vector x ¼ Tyy 2 LðyÞ; jjTyyjj 
 jjxjj for all x 2 LðyÞ and it is called the

least square solution of minimal norm. A different treatment of Ty is given in [11,

Pages 314, 318–320], where it is called ‘‘the Maximal Tseng generalized Inverse’’.

Here we recall some properties of Ty that we will be using very frequently.

Theorem 2.1 [11, Page 320] Let T 2 CðH1;H2Þ be densely defined. Then

(1) DðTyÞ ¼ RðTÞ �? RðTÞ?; NðTyÞ ¼ RðTÞ? ¼ NðT�Þ
(2) RðTyÞ ¼ CðTÞ
(3) Ty is densely defined and Ty 2 CðH2;H1Þ
(4) Ty is continuous if and only R(T) is closed

(5) Tyy ¼ T

(6) T�y ¼ Ty�

(7) NðT�yÞ ¼ NðTÞ
(8) T�T and TyT�y are positive and ðT�TÞy ¼ TyT�y

(9) TT� and T�yTy are positive and ðTT�Þy ¼ T�yTy.
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3 Minimum attaining operators

In this section first we discuss some important properties of minimum attaining

operators. These operators for the bounded case were discussed in [8] and the

unbounded case in [17]. It is proved that this class is dense in the class of densely

defined closed operators with respect to the gap topology.

Definition 3.1 [11, 15] Let T 2 CðH1;H2Þ be densely defined. Then

mðTÞ :¼ inf fkTxk : x 2 SDðTÞg
cðTÞ :¼ inf fkTxk : x 2 SCðTÞg;

are called the minimum modulus and the reduced minimum modulus of T,

respectively. The operator T is said to be bounded below if and only if mðTÞ[ 0.

Remark 3.2 If T 2 CðH1;H2Þ is densely defined, then

(a) by definition, we have mðTÞ
 cðTÞ. Moreover, if T is one-to-one, mðTÞ ¼
cðTÞ since DðTÞ ¼ CðTÞ

(b) mðTÞ[ 0 if and only if R(T) is closed and T is one-to-one

(c) since DðTÞ ¼ DðjTjÞ and kTxk ¼ kjTjxk for all x 2 DðTÞ, we can conclude

that mðTÞ ¼ mðjTjÞ and cðTÞ ¼ cðjT jÞ.

Remark 3.3 If T 2 CðHÞ is densely defined and R(T) is closed, then cðTÞ ¼ 1
kTyk.

Recall that T 2 BðH1;H2Þ is said to be norm attaining if there exists x0 2 SH1

such that kTx0k ¼ kTk. We denote the class of all norm attaining operators between

H1 and H2 by NðH1;H2Þ. In case H1 ¼ H2 ¼ H, we denote this by NðHÞ. In a

similar way, we can define operators that attain minimum modulus. The class of

bounded operators that attain minimum modulus is defined and several character-

izations are proved in [8]. Here we discuss the same for unbounded operators.

Definition 3.4 Let T 2 CðH1;H2Þ be densely defined. If there exists x0 2 SDðTÞ such

that kTx0k ¼ mðTÞ, then we call T to be minimum attaining.

We write

McðH1;H2Þ ¼ fT 2 CðH1;H2Þ : T is densely defined and minimum attainingg

and McðH;HÞ ¼ McðHÞ.

Remark 3.5 Let T 2 CðH1;H2Þ be densely defined.

(1) If T is not one-to-one, then mðTÞ ¼ 0 and there exists a x0 2 SNðTÞ such that

Tx0 ¼ 0. Hence T 2 McðH1;H2Þ.
(2) If T is one-to-one and R(T) is not closed, then mðTÞ ¼ 0. But there does not

exists x0 2 DðTÞ such that kTx0k ¼ 0, since T is one-to-one. Thus

T 62 McðH1;H2Þ.
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From the above two observations it is apparent that the injectivity of the operator

plays an important role in the minimum attaining property.

First, we establish some results related to the minimum modulus of a densely

defined closed operator, which are useful in discussing the minimum attaining

property.

Proposition 3.6 Let T 2 CðHÞ be densely defined and normal. Then

(1) mðTÞ ¼ dð0; rðTÞÞ
(2) mðTnÞ ¼ mðTÞn

.

Proof If mðTÞ ¼ 0, then T is not invertible, so 0 2 rðTÞ and dð0; rðTÞÞ ¼ 0. If

mðTÞ[ 0, then T�1 2 BðHÞ and it is normal. In this case, mðTÞ ¼ cðTÞ ¼ 1
kT�1k.

Therefore,

1

kT�1k ¼ 1

sup fjlj : l 2 rðT�1Þg

¼ 1

sup 1
jkj : k 2 rðTÞ
n o

¼ inf fjkj : k 2 rðTÞg
¼ dð0; rðTÞÞ:

Proof of (2): It is easy to verify that Tn is normal. Hence, by (1) and the spectral

mapping theorem we can conclude that
mðTnÞ ¼ inf fjlj : l 2 rðTnÞg

¼ inf fjknj : k 2 rðTÞg
¼ inf fjkjn : k 2 rðTÞg
¼ mðTÞn:

h

Corollary 3.7 If T 2 CðH1;H2Þ is densely defined, then

(1) mðTÞ ¼ dð0; rðjTjÞÞ
(2) mðT�TÞ ¼ mðTÞ2.

Proof We have mðTÞ ¼ mðjTjÞ ¼ dð0;rðjT jÞÞ, by (1) of Proposition 3.6. Also,

mðT�TÞ ¼ mðjT j2Þ ¼ dð0;rðjT j2ÞÞ ¼ dð0; rðjT jÞÞ2 ¼ mðjTjÞ2 ¼ mðTÞ2. Here we

have used both (1) and (2) of Proposition 3.6 to get the conclusion.

Proposition 3.8 Let T 2 CðHÞ be densely defined and positive. Then

mðTÞ ¼ inf
�
hTx; xi : x 2 SDðTÞ

�
¼: mT :
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Proof First note that DðTÞ � DðT 1
2Þ. Next,

mT ¼ inf
�
hTx; xi : x 2 SDðTÞ

�
¼ inf

��
T

1
2x; T

1
2x
�
: x 2 SDðTÞ

�

� inf
���T

1
2x
��2 : x 2 D

�
T

1
2

��

¼ m
�
T

1
2

�2
:

But mðT 1
2Þ ¼ inf fk : k 2 rðT 1

2Þg by Corollary 3.7. As rðTÞ ¼ fk2 : k 2 rðT 1
2Þg, we

have that mðT 1
2Þ2 ¼ mðTÞ and hence mT �mðTÞ.

On the other hand, we have

mT 
hTx; xi for all x 2 SDðTÞ

¼ hT 1
2x; T

1
2xi for all x 2 SDðTÞ

¼ kT
1
2xk2 for all x 2 SDðTÞ:

Next, we claim that the above inequality holds for all x 2 DðT 1
2Þ. To this end, let

x 2 DðT 1
2Þ. Since, D(T) is a core for T

1
2, there exists a sequence ðxnÞ 	 DðTÞ such

that limn!1 xn ! x and limn!1 T
1
2xn ¼ T

1
2x. Hence kT

1
2xk2 ¼ limn!1

kT
1
2xnk2 �mT . As this is true for all x 2 DðT 1

2Þ, it follows that mðTÞ�mT .

By the above two observations the conclusion follows. h

We recall that if T 2 CðH1;H2Þ is densely defined, then the numerical range W(T)

of T is defined by WðTÞ ¼ fhTx; xi : x 2 SDðTÞg.

Proposition 3.9 If T 2 CðHÞ is positive, then the following are equivalent;

(1) T 2 McðHÞ
(2) mðTÞ 2 rpðTÞ
(3) m(T) is an extreme point of W(T).

Proof Proof of ð1Þ ) ð2Þ : Choose x0 2 SDðTÞ such that kTx0k ¼ mðTÞ. Since,
T � mðTÞI is positive, and by the Cauchy–Scwarz inequality, we get that

mðTÞ
 hTx0; x0i
 kTx0k ¼ mðTÞ;

or mðTÞ ¼ hTx0; x0i. Therefore,

kTx0 � mðTÞx0k2 ¼ kTx0k2 þ mðTÞ2 � 2mðTÞhTx0; x0i
¼ 2mðTÞ2 � 2mðTÞ2

¼ 0:

That is, Tx0 ¼ mðTÞx0. Clearly, if mðTÞ 2 rpðTÞ, then T 2 McðHÞ.
Proof of ð2Þ ) ð3Þ : Let x0 2 SDðTÞ be such that Tx0 ¼ mðTÞx0. Then

mðTÞ ¼ hTx0; x0i 2 WðTÞ. Since, mðTÞ ¼ mT by Proposition 3.8, the conclusion

follows. The other way implication follows by the main theorem of [18]. h

Using Proposition 3.9, we can prove the following.
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Proposition 3.10 Let T 2 CðHÞ be densely defined and positive. Then T 2 McðHÞ
if and only if T

1
2 2 McðHÞ.

Proof If T
1
2 2 McðHÞ, then mðT 1

2Þ 2 rpðT
1
2Þ, which implies that mðTÞ 2 rpðTÞ. By

Proposition 3.9, T 2 McðHÞ.
Conversely, if T 2 McðHÞ, then mðTÞ 2 rpðTÞ, by Proposition 3.9. If mðTÞ ¼ 0,

then mðT 1
2Þ ¼ 0 and hence T

1
2 2 McðHÞ. Next, assume that mðTÞ[ 0. Then

mðT 1
2Þ[ 0 and

T � mðTÞI ¼
�
T

1
2 þ mðTÞ

1
2I
��

T
1
2 � mðTÞ

1
2I
�
:

As T
1
2 þ mðTÞ

1
2I has a bounded inverse, we have that T

1
2 � mðTÞ

1
2I is not one-to-one.

Hence mðT 1
2Þ 2 rpðT

1
2Þ. The conclusion follows by Proposition 3.9. h

Theorem 3.11 Let T 2 CðH1;H2Þ be densely defined. Then the following

statements are equivalent:

(1) T 2 McðH1;H2Þ
(2) jT j 2 MðH1Þ
(3) T�T 2 MðH1Þ.

Proof The equivalence of (1) and (2) follows by the observation that DðTÞ ¼
DðjT jÞ and kTxk ¼ kjT jxk for all x 2 DðTÞ. The equivalence of (2) and (3) follows

by the fact that T�T ¼ jT j2 and Proposition 3.10. h

Proposition 3.12 Let T 2 CðH1;H2Þ be densely defined and mðTÞ ¼ mðT�Þ. Also,

assume that R(T) is closed. Then T 2 McðH1;H2Þ if and only if T� 2 McðH2;H1Þ.

Proof Clearly, if mðTÞ ¼ mðT�Þ ¼ 0, since R(T) closed, both T and T� are not one-
to-one. Hence both are minimum attaining. Now assume that mðTÞ[ 0. It is

sufficient to prove one implication, since T�� ¼ T and mðTÞ ¼ mðT�Þ. By

Proposition 3.9, T 2 McðH1;H2Þ if and only if there exists a x0 2 SDðjT jÞ such

that jT jx0 ¼ mðTÞx0. That is T�Tx0 ¼ mðTÞjT jx0. Hence

kT�Tx0k
kTx0k

¼ mðTÞ kjTjx0kkTx0k
¼ mðTÞ;

proving T� 2 McðH2;H1Þ. h

Remark 3.13 Let T 2 CðHÞ be densely defined and normal. Then DðTÞ ¼ DðT�Þ
and kTxk ¼ kT�xk for all x 2 DðTÞ. Hence T 2 McðHÞ if and only if T� 2 McðHÞ.
Clearly, in this case mðTÞ ¼ mðT�Þ. Note that in this case we don’t have to assume

that the range of T to be closed.

Example 3.14 Let D ¼ fðxnÞ 2 ‘2 :
P1

n¼1 n2jxnj2\1g. Define T : D ! ‘2 by

Tððx1; x2; x3; . . .; ÞÞ ¼ ðð0; x1; 2x2; 3x3; . . .ÞÞ; for all ðxnÞ 2 D:
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Clearly, T is densely defined closed operator. Note that T�TðxnÞ ¼ ðn2xnÞ for all

ðxnÞ 2 DðT�TÞ. It can be easily calculated that rðT�TÞ ¼ rpðT�TÞ ¼ fn2 : n 2 Ng.
Hence mðT�TÞ ¼ 1 and T�T 2 Mð‘2Þ. By Theorem 3.11, we can conclude that

T 2 Mð‘2Þ and by Corollary 3.7, we have mðTÞ ¼ 1.

Proposition 3.15 Let T be densely defined and positive. Then T 2 McðHÞ if and

only if Tn 2 McðHÞ for each n� 1.

Proof Let T 2 McðHÞ. Then by Proposition 3.9, there exists x0 2 DðTÞ such that

Tx0 ¼ mðTÞx0. Observe that x0 2 DðT2Þ. This implies that T2x0 ¼ mðTÞ2x0 ¼
mðT2Þx0, by Proposition 3.6. That is x0 2 DðT4Þ � DðT3Þ. With this, we have

T3x0 ¼ mðTÞ3x0. By the induction argument we can show that Tnx0 ¼ mðTÞn
x0. By

Proposition 3.9, it follows that Tn 2 McðHÞ.
To prove the converse, assume that n[ 1 and Tn 2 McðHÞ. Choose x0 2 SDðTÞ

such that Tnx0 ¼ mðTnÞx0. As mðTnÞ ¼ mðTÞn
, if mðTnÞ ¼ 0, then mðTÞ ¼ 0. In this

case x0 2 NðTnÞ. That is Tn�2x0 2 NðT2Þ ¼ NðTÞ. Hence x0 2 NðTn�1Þ. Proceeding
in this way we can conclude that x0 2 NðTÞ, proving T 2 McðHÞ.

Next assume that mðTÞ[ 0. Since T is positive, T�1 2 BðHÞ. Hence Tx0 ¼
mðTÞx0 implies that

Tn�1x0 ¼ T�1Tnx0 ¼ mðTÞn
T�1x0 ¼ mðTÞn x0

mðTÞ ¼ mðTÞn�1
x0:

By proceeding in this way, we can conclude that Tx0 ¼ mðTÞx0. Hence T 2 McðHÞ.
h

Proposition 3.16 Let T 2 McðH1;H2Þ be one-to-one. Then R(T) is closed.

Proof If R(T) is not closed, then mðTÞ ¼ 0. Since T 2 McðH1;H2Þ, there exists

x0 2 SDðTÞ such that kTx0k ¼ 0, but contradicts T to be one-to-one. Thus R(T) is

closed. h

Remark 3.17 The condition one-one ness is not necessary in Proposition 3.16. For

example, let P be a bounded orthogonal projection. Then R(P) is closed and it is

minimum attaining but not one-to-one.

Corollary 3.18 Let T 2 McðH1;H2Þ. Then T is one-to-one if and only T bounded

below.

Next, we will establish a relation between the minimum attaining property of the

operator and the norm attaining property of its generalized inverse. First we prove a

few results needed for this purpose.

Proposition 3.19 Let T 2 CðH1;H2Þ be densely defined. Then

(1) jTyj ¼ jT�jy

(2) jðTyÞ�j ¼ jTjy.

Proof Proof of (1): By definition of jTyj, and by Theorem 2.1,
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jTyj ¼
�
ðTyÞ�Ty�12 ¼ �ðTT�Þy

�1
2 ¼

�
ðjT�j2Þy

�1
2 ¼

�
ðjT�jÞyðjT�jÞy

�1
2 ¼ jT�jy:

The proof of (2) can be obtained by replacing T by T� in (1) and observing that

ðT�Þy ¼ ðT�Þy and ðT�Þ� ¼ T . h

Theorem 3.20 Let T 2 CðH1;H2Þ be densely defined and one-to-one. Then the

following statements are equivalent;

(1) T 2 McðH1;H2Þ
(2) R(T) is closed and Ty 2 N ðH2;H1Þ.

Proof First assume that T 2 McðH1;H2Þ. Note that R(T) is closed, by Proposi-

tion 3.16. As T is one-to-one, we have mðTÞ[ 0. Choose x0 2 DðTÞ such that

jTjx0 ¼ mðTÞx0. Hence

mðTÞjTj�1
x0 ¼ jTj�1jT jx0 ¼ x0:

So

jT j�1
x0 ¼

1

mðjTjÞ x0: ð3:1Þ

By Proposition 3.19, we have jT j�1 ¼ jðTyÞ�j ¼ jT jy. Since

mðjT jÞ ¼ mðTÞ ¼ 1

kTyk ¼ 1

kjTyjk, Eq. 3.1, takes the form jTyjx0 ¼ kjTyjkx0. Hence

the conclusion follows.

To prove the other implication, let Ty 2 N ðH2;H1Þ. Then clearly, R(T) is closed.

By [5, Proposition 2.5], S :¼ ðTyÞ� 2 N ðH1;H2Þ. Hence by Proposition 3.19, we

have jSj ¼ jT jy. Since jTjy is positive and norm attaining, there exists x0 2 SH1
such

that

jSjx0 ¼ kSkx0 ¼ kTykx0 ¼
1

mðTÞ x0: ð3:2Þ

Note that x0 2 RðjTjyÞ ¼ CðjT jÞ ¼ CðTÞ � NðTÞ?. Premultiplying Eq. 3.2 by |T|

and noting that RðjT jÞ ¼ NðTÞ?, we have jTjx0 ¼ mðTÞx0, concluding

jTj 2 MðH1Þ. Hence T 2 McðH1;H2Þ by Theorem 3.11. h

Next, we show that minimum attaining property of a closed densely defined

operator is related to the minimum attaining property of the corresponding bounded

transform. If T 2 CðH1;H2Þ is densely defined, then the operator ZT :¼ TðI þ
T�TÞ�

1
2 is called the bounded transform of T. Moreover, T ¼ ZTðI � Z�

T ZTÞ�
1
2. We

refer [12, section 7.3, page 142] for more details about these operators.

Proposition 3.21 Let T 2 CðH1;H2Þ be densely defined. Then

(1) mðZTÞ ¼
mðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ mðTÞ2
q
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(2) mðTÞ2 ¼ mðZTÞ2

1� mðZTÞ2
(3) T 2 McðH1;H2Þ if and only if ZT 2 McðH1;H2Þ.

Proof Proof of (1): We have that

mðZTÞ2 ¼ mðZ�
T ZTÞ ¼ mðI � ðI þ T�TÞ�1Þ

¼ 1� kðI þ T�TÞ�1

¼ 1� 1

mðI þ T�TÞ ;

by Remark 3.3. Hence

mðZTÞ2 ¼ 1� 1

1þ mðTÞ2

¼ mðTÞ2

1þ mðTÞ2
:

Proof of (2): Note that T�T ¼ Z�
T ZTðI � Z�

T ZTÞ�1 ¼ ðI � Z�
T ZTÞ�1 � I. Thus

mðTÞ2 ¼ mðT�TÞ ¼ mðI � Z�
T ZTÞ�1 � 1

¼ 1

kI � Z�
T ZTk

� 1 ¼ 1

1� mðZ�
T ZTÞ

� 1;

by Remark 3.3. Hence

mðTÞ2 ¼ 1

1� mðZTÞ2
� 1 ¼ mðZTÞ2

1� mðZTÞ2
:

Proof of (3): In view of Theorem 3.11, it is enough to prove T�T 2 MðH1Þ if and
only if Z�

T ZT 2 MðH1Þ. We know by (2) of Proposition 3.9, that T�T 2 MðH1Þ if
and only if mðTÞ2 2 rpðT�TÞ. Since, Z�

T ZT ¼ T�TðI þ T�TÞ�1
and mðZ�

TZTÞ ¼
mðTÞ2

1þmðTÞ2, it can be verified that mðTÞ2 2 rpðT�TÞ if and only if mðZ�
T ZTÞ 2 rpðZ�

T ZTÞ.
h

4 Absolutely minimum attaining operators

In this section, we define absolutely minimum attaining operators and describe the

structure of such operators.

Definition 4.1 Let T 2 CðH1;H2Þ be densely defined. Then T is called absolutely

minimum attaining operator if T jM : DðTÞ \ M ! H2 is minimum attaining for each

non- zero closed subspace M of H1. In other words, T is absolutely minimum

attaining if there exists x0 2 D
�
T jM

�
with kx0k ¼ 1 such that kTx0k ¼ mðTjMÞ.
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Note that if T 2 CðH1;H2Þ is densely defined and M is a closed subspace of H,

then the restriction operator TjM : DðTÞ \ M ! H2 is a closed operator and it is

densely defined as DðT jMÞ is dense in the Hilbert space DðT jMÞ.
We denote the set of all absolutely minimum attaining operators between H1 and

H2 by AMcðH1;H2Þ and in case if H1 ¼ H2 ¼ H, this is denoted by AMcðHÞ. This
concept for bounded operators was introduced and studied in detail by Carvajal and

Neves in [8]. The structure of positive absolutely minimum attaining bounded

operators is studied in [9].

Proposition 4.2 Let T 2 AMcðH1;H2Þ. Then R(T) is closed.

Proof Since T 2 AMcðH1;H2Þ, we have T0 ¼ TjNðTÞ? 2 AMcðNðTÞ?;H2Þ and

one-to-one. Hence by Proposition 3.16, RðT0Þ is closed. It is clear that

RðTÞ ¼ RðT0Þ. h

Remark 4.3 The converse of Proposition 4.2 need not be true. Let P be a bounded

orthogonal projection with infinite dimensional null space and infinite dimensional

range space. Then R(P) is closed but P is not absolutely minimum attaining by [8,

Lemma 3.2].

Let M be a closed subspace of H and T 2 CðHÞ be densely defined. Then M is

said to be invariant under T, if TðM \ DðTÞÞ � M.

Let P :¼ PM . If PðDðTÞÞ � DðTÞ and ðI � PÞðDðTÞÞ � DðTÞ, then

T ¼
T11 T12

T21 T22


 �
;

where Tij ¼ PiTPjjMj ði; j ¼ 1; 2Þ. Here P1 ¼ P and P2 ¼ I � P. It is known that

M is invariant under T if and only if T21 ¼ 0. Also, M reduces T if and only if

T21 ¼ 0 ¼ T12.

Remark 4.4 Let T 2 CðH1;H2Þ be densely defined. Assume that M reduces T and

T1 ¼ T jM and T2 ¼ TjM? . Then the following can be easily verified:

(1) mðTÞ ¼ minfmðT1Þ;mðT2Þg
(2) T 2 McðHÞ if and only if the operator Tj with mðTjÞ ¼ mðTÞ; ðj ¼ 1 or 2Þ, is

minimum attaining.

Lemma 4.5 Let T 2 CðHÞ be densely defined closed range operator. If M reduces

T, then TyjM ¼ ðT jMÞ
y
.

Proof Since M is a reducing subspace, we have

T ¼
T1 0

0 T2


 �
;

where T1 ¼ TjM and T2 ¼ T jM? . Since R(T) is closed, by Theorem [14, page 287,

V.5], RðTiÞ is closed for i ¼ 1; 2. Let S ¼ T
y
1 0

0 T
y
2

 !
: Note that S 2 BðHÞ and it
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can be verified that S satisfies all the conditions of the Moore–Penrose inverse.

Since Ty is unique, it follows that S ¼ Ty. This proves the claim. h

Theorem 4.6 Let T 2 CðHÞ be densely defined and have a bounded inverse. Let

M be a subspace of H. Then

(1) mðT jMÞ ¼
1

kT�1jTðM\DðTÞÞk
(2) if M is closed, then TðM \ DðTÞÞ is closed

(3) If N is any subspace of H, then mðTjT�1ðNÞÞ ¼
1

kT�1jNk
.

Furthermore, if N is closed and T 2 BðHÞ, then T�1ðNÞ is closed.

(4) T 2 AMcðHÞ if and only if T�1 2 ANðHÞ.

Proof Proof of (1): First, note that as T is one-to-one, we have DðTÞ ¼ CðTÞ and
mðTÞ ¼ cðTÞ. By definition,

mðTjMÞ ¼ inf

(
kTxk
kxk : x 2 M \ DðTÞ; x 6¼ 0

)

¼ 1

sup

(
kxk
kTxk : x 2 M \ CðTÞ; x 6¼ 0

)

¼ 1

sup

(
kT�1yk
kyk : y ¼ Tx 2 TðM \ DðTÞÞ; x 6¼ 0

)

¼ 1

kT�1jTðM\DðTÞÞk
:

Proof of (2): Let N :¼ TðM \ DðTÞÞ and let y 2 N. Let ðxnÞ 	 M \ DðTÞ be such

that y ¼ limn!1 Txn. Since T�1 2 BðHÞ, it follows that limn!1 xn ¼ T�1y. Since

M is closed, we can conclude that T�1y 2 M \ DðTÞ. Since R(T) is closed,

y 2 RðTÞ. Hence y ¼ TðT�1yÞ 2 TðM \ DðTÞÞ.
Proof of (3): This goes along the similar lines of (1) and (2).

Proof of (4): If M ¼ H, then by Theorem 3.20, we have that T 2 McðHÞ if and
only if T�1 2 NðHÞ. Hence assume that f0g 6¼ M 	 H. Let T�1 2 ANðHÞ. Let
X ¼ TðM \ DðTÞÞ and RX ¼ T�1jX . By (2), X is closed. Since RX 2 NðX;HÞ, there
exists y0 2 SX , such that kRXy0k ¼ kRXk. This is equivalent to the fact that

R�
XRXy0 ¼ kRXk2y0. Let y0 ¼ Tx0 for some x0 2 M \ DðTÞ, we get

R�
Xx0 ¼ kRXk2Tx0. Therefore kTx0k ¼ kR�

Xx0k
kRXk2


 kx0k
kRXk

¼ mðTjMÞ kx0k by (1).

Writing z0 ¼
x0

kx0k
, we get that kTz0k
mðTjMÞ. But the other inequality holds

clearly. Hence TjM 2 McðM;HÞ.
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Conversely, assume that T 2 AMcðHÞ. Let N be a closed subspace of H and let

M :¼ T�1ðNÞ � CðTÞ. Since T 2 AMcðHÞ, we have TM :¼ T jM 2 McðM;HÞ. It
can be easily verified that TM is closed, since T is closed. Since DðTÞ \ M is dense

in DðTÞ \ M, it follows that TM is a densely defined operator. Hence T�
M : DðT�

MÞ !
M exists. By Theorem 3.11 and Proposition 3.9, there exists x0 2 SDðT�

M
TMÞ such that

T�
MTMx0 ¼ mðTMÞ2x0: ð4:1Þ

As T is bounded below, TM is bounded below and hence mðTMÞ[ 0. Let x0 ¼ T�1y0
for some y0 2 N. Then Eq. 4.1 takes the form:

T�
My0 ¼ mðTMÞ2T�1y0: ð4:2Þ

First, observe that

RðTMÞ ¼ TMðM \ DðTÞÞ ¼ TðM \ DðTÞÞ ¼ TðMÞ ¼ TðT�1ðNÞÞ ¼ N. Hence

y0 2 N ¼ RðTMÞ ¼ NððTMÞ�Þ?. Taking norm both sides of Eq. 4.2, we get

kT�1y0k ¼ kT�
My0k

mðTMÞ2
� cðT�

MÞky0k
mðTMÞ2

¼ cðTMÞky0k
mðTMÞ2

� mðTMÞky0k
mðTMÞ2

¼ ky0k
mðTMÞ

:

Hence z0 ¼
y0

ky0k
2 SN and kT�1ðz0Þk ¼ kT�1jNk. h

Corollary 4.7 Let T 2 BðHÞ be such that T�1 2 BðHÞ. Then T 2 AMcðHÞ if and

only if T�1 2 ANðHÞ.

Theorem 4.8 Let T 2 AMcðHÞ, positive and not bounded. Assume that T is one-

to-one. Then there exists an unbounded (increasing) sequence fkng of eigenvalues

of T with corresponding eigenvectors f/ng such that

(1)

DðTÞ ¼ x 2 H :
X1
n¼1

k2n jhx;/nij2\1
( )

and

Tx ¼
X1
n¼1

knhx;/ni/n; for all x 2 DðTÞ:

The series in the above representation converges in the strong operator

topology. Moreover, T�1 is compact.

(2) rðTÞ ¼ fkn : n 2 Ng=rpðTÞ
(3) if l 2 rpðTÞ, then l is an eigenvalue with finite multiplicity

(4) spanf/n : n 2 Ng ¼ H.

Proof Proof of (1): First note that as T is one-to-one and R(T) is closed, T is

bounded below. Since T � 0, we have T�1 exists and bounded. If T 2 AMcðHÞ,
then T�1 2 ANðHÞ by Theorem 4.6. Hence by [19, Theorem 2.5], there exists

unique triple ðK;F; aÞ, where K 2 KðHÞ is positive, F 2 FðHÞ positive and a� 0
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such that KF ¼ 0 ¼ FK; F 
 aI and T�1 ¼ aI þ K � F. If a ¼ 0, then F ¼ 0 and

hence T�1 ¼ K 2 KðHÞ. Next, assume that a[ 0. In this case, RðT�1Þ ¼ DðTÞ is
closed by [19, Proposition 2.8]. Since T is densely defined, we must have that

DðTÞ ¼ H. By the closed graph theorem T must be bounded, a contradiction. Hence

a[ 0 is not possible. This implies that a ¼ 0 and hence T�1 2 KðHÞ.
By the spectral theorem, there exists decreasing sequence ðlnÞ of positive

eigenvalues of T�1 with corresponding eigenvectors f/n : n 2 Ng such that

T�1y ¼
X1
n¼1

lnhy;/ni/n; for all y 2 H: ð4:3Þ

The sequence ln ! 0 as n ! 1. Moreover, the above series converges to T�1 in

the operator norm of BðHÞ. We can also observe that the sequence ðlnÞ is an infinite
sequence. Otherwise, T�1 is a finite rank operator and rðTÞ is bounded. By [20] this

implies that T is bounded which leads to a contradiction. Also, since T�1 is compact,

rðT�1Þ ¼ fln : n 2 Ng [ f0g ¼ rpðTÞ and each ln has finite multiplicity. Also,

lnþ1 
 ln for each n 2 N.

Let kn :¼ l�1
n for all n 2 N. As T�1 is compact, by [21, Theorem 6.1, page 214],

it follows that

DðTÞ ¼ x 2 H :
X1
n¼1

k2n jhx;/nij
2\1

( )
and

Tx ¼
X1
n¼1

knhx;/ni/n; for all x 2 DðTÞ:

On the other hand, if T�1 is compact, by Theorem 4.6, T 2 AMcðHÞ.
Proof of statement (2) is clear. The statement (3) is proved in (1).

Proof of (4): Since T�1 is compact, RðT�1Þ ¼ DðTÞ is separable and by the

representation above, we have that H ¼ DðTÞ ¼ RðT�1Þ ¼ spanf/n : n 2 Ng. h

Remark 4.9 If T 2 BðHÞ, then the conclusion (1) of Theorem 4.8 is not true. The

unboundedness of the operator is used to get the inverse to be compact.

Theorem 4.10 Let T 2 CðHÞ be densely defined and one-to-one but not bounded.

Then

(1) T 2 AMcðHÞ if and only if T�T 2 AMcðHÞ
(2) T 2 AMcðHÞ if and only if Ty 2 KðHÞ.

Proof Proof of (1): If T 2 AMcðHÞ, then R(T) is closed. As T is one-to-one, T is

bounded below. Also, since |T| and T�T are bounded below and positive, both have

bounded inverse. Hence
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T 2 AMcðHÞ , jT j 2 AMcðHÞ , jTj�1 2 KðHÞ ðby Theorem 4.8Þ
, jTj�2 2 KðHÞ
, ðT�TÞ�1 2 KðHÞ
, T�T 2 AMcðHÞ ðby Theorem 4.8Þ:

Proof of (2): By (1),

T 2 AMcðHÞ , jTj 2 AMcðHÞ
) jTjy 2 KðHÞ:

On the other hand, if Ty 2 KðHÞ, then R(T) is closed. As T is one-to-one, T must be

bounded below. This implies that jT j�1 2 BðHÞ. Thus,

Ty 2 KðHÞ , ðT�Þy 2 KðHÞ , jðT�Þyj 2 KðHÞ
, jTjy ¼ jTj�1 2 KðHÞ ðby (2) of Proposition 3.19Þ
, jTj 2 AMcðHÞ
, T 2 AMcðHÞ:

h

Theorem 4.11 Let T 2 CðHÞ be densely defined unbounded and have a bounded

inverse. Then T 2 AMcðHÞ if and only if T� 2 AMcðHÞ.

Proof First observe that both T and T� are bounded below. We know that T 2
AMcðHÞ if and only if T�1 2 KðHÞ. This is true if and only if ðT�Þ�1 2 KðHÞ.
Now, by 2 of Theorem 4.10, this is equivalent to the fact that T� 2 AMcðHÞ.

Definition 4.12 (Hyperinvariant subspace) Let T 2 CðHÞ be densely defined and

M be a closed subspace of H. Then M is said to be hyperinvariant subspace of T if

M is invariant under every S 2 BðHÞ such that ST � TS.

Theorem 4.13 (Lomonosov [22]) Every operator that commutes with a non-zero

compact operator and is not a multiple of the identity has a non-trivial

hyperinvariant subspace.

Using Theorem 4.13 we will prove that every AM-operator has a non trivial

hyperinvariant subspace.

Theorem 4.14 Let T 2 AMcðHÞ, unbounded and T�1 2 BðHÞ. Then T has a non

trivial hyper invariant subspace.

Proof Let S 2 BðHÞ be such that ST � TS. That is STx ¼ TSx for all x 2 DðTÞ.
Then it can be easily verified that T�1S ¼ ST�1. But T�1 2 KðHÞ by (2) of

Theorem 4.10. Now, by Theorem 4.13, T�1 has a non trivial invariant subspace, say

M. Then M is invariant under S. Thus the conclusion follows. h

123

S. H. Kulkarni, G. Ramesh

Author's personal copy



Now, we can drop the condition that the operator to be one-to-one in

Theorem 4.8 and prove the result.

Theorem 4.15 Let T 2 AMcðHÞ be, positive but not bounded. Then

(1) Ty is compact

(2) R(T) is separable.

Proof Since N(T) reduces T, we can write T ¼ T0 0

0 T1


 �
, where T0 ¼ T jNðTÞ and

T1 ¼ TNðTÞ? . Then by Lemma 4.5, Ty ¼ T
y
0 0

0 T�1
1


 �
. As T1 2 AMðNðTÞ?Þ, by

Theorem 4.10, T�1
1 is compact. Note that T0 ¼ 0 if NðTÞ 6¼ f0g and T ¼ T1 if

NðTÞ ¼ f0g. Hence Ty is compact. Also RðT1Þ is separable by (4) of Theorem 4.8.

Now the conclusion follows as RðTÞ ¼ RðT1Þ. h

Using Theorem 4.15, we can prove a more general result.

Theorem 4.16 Let T 2 AMcðHÞ, but not bounded. Then

(1) Ty is compact

(2) NðTÞ? and R(T) are separable.

Proof Proof of (1): We have T 2 AMcðHÞ if and only if jT j 2 AMcðHÞ. Hence
jTjy 2 KðHÞ by Theorem 4.15. But, by Proposition 3.19, jTjy ¼ jðTyÞ�j and hence

ðTyÞ� 2 KðHÞ. This implies that Ty 2 KðHÞ.
Proof of (2): Since Ty is compact, RðTyÞ ¼ CðTÞ is separable. Hence NðTÞ? is

separable. Since R(T) is closed, RðT�Þ must be closed and since NðTÞ? ¼ RðT�Þ,
RðT�Þ is separable. But, RðT�Þ is separable if and only if R(T) is separable by [23,

Problem 11.4.6, page 362]. h

Question 4.17 If T 2 CðHÞ is densely defined and Ty 2 KðHÞ. Is it true that

T 2 AMcðHÞ.

Theorem 4.18 Let T be densely defined and self-adjoint, one-to-one operator on an

infinite dimensional Hilbert space H which is not bounded. Then the following are

equivalent:

(1) T 2 AMcðHÞ
(2) T�1 2 KðHÞ
(3) there exists a real sequence ðknÞ and an orthonormal basis fvn : n 2 Ng of

H such that limn!1 jknj ¼ 1 and Tvn ¼ knvn for each n 2 N

(4) T has purely discrete spectrum

(5) the resolvent RkðTÞ :¼ ðT � kIÞ�1
is compact for one, and hence for all

k 2 qðTÞ
(6) the embedding map JT : ðDðTÞ; k � kTÞ ! H is compact (here

kxkT ¼
�
kxk2 þ kTxk2

�1
2; x 2 DðTÞ).
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Proof If T 2 AMcðHÞ, then R(T) is closed. As T is one-to-one, T must be bounded

below and hence T�1 2 BðHÞ. Now, by (2) of Theorem 4.10, T�1 2 KðHÞ. Again
by (2) of Theorem 4.10, if T�1 2 KðHÞ, then T 2 AMcðHÞ. Thus (1) and (2)

are equivalent. The equivalence of (2)–(6) follows by [12, Proposition 5.12, page

94]. h

Next, we give an example of AM-operator.

Example 4.19 Let p; p
0
; q;w be continuous real valued functions defined on

[a, b] with a\b and wðtÞ[ 0 for all t 2 ½a; b�. Consider the real Hilbert space

H :¼ u :

Z b

a

juðxÞj2wðxÞdx\1
� 

with the inner product

hu; vi :¼
Z b

a

uðxÞvðxÞwðxÞdx:

Let L be the Sturm–Liouville operator given by

Lu :¼ 1

w

�
� ðpu

0 Þ
0
þ qu

�

with

DðLÞ ¼ u 2 H : u 2 C2½a; b�;

b1uðaÞ þ c1u
0 ðaÞ ¼ 0;

b2uðbÞ þ c2u
0 ðbÞ ¼ 0;

jb1j þ jc1j[ 0;

jb2j þ jc2j[ 0

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
:

Since D(L) contains continuous functions defined on [a, b] with compact support,

L is densely defined operator. Also L is symmetric (See [24, Chapter 7, section 5].

Let us assume that 0 62 rpðLÞ. In this case it easy to see that L�1 is compact and self

adjoint. Let B :¼ fv1; v2; v3. . .g is an orthonormal basis for H such that Lvn ¼ lnvn,

where l1; l2; . . . is a sequence of real numbers which are eigenvalues of L. In this

case every u 2 H can be expressed as

u ¼
X1
n¼1

hu; vnivn:

If u 2 DðLÞ, then

X1
n¼1

jhu; vnij2l2n\1

and
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Lu ¼
X1
n¼1

lnhu; vnivn:

Note that L�1y ¼
P1

n¼1 l
�1
n hy; vnivn for all y 2 H. It is clear that jL�1j is compact

and by Proposition 3.19, we have jLj�1 ¼ jL�1j. Hence by Theorem 4.18,

L 2 AMcðHÞ.

Author Contributions All authors contributed equally and significantly in this paper. All authors read and

approved the final manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval This article does not contain any studies with human participants or animals performed

by any of the authors.

References

1. Enflo, P., J. Kover, and L. Smithies. 2001. Denseness for norm attaining operator-valued functions.

Linear Algebra and Its Applications 338: 139–144.

2. Shkarin, S. 2009. Norm attaining operators and pseudospectrum. Integral Equations Operator Theory

64(1): 115–136.

3. Acosta, M.D., R.M. Aron, and F.J. Garcı́a-Pacheco. 2017. The approximate hyperplane series

property and related properties. Banach Journal of Mathematical Analysis 11(2): 295–310.
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12. Schmüdgen, K. 2012. Unbounded self-adjoint operators on Hilbert space. Graduate Texts in

Mathematics, 265, Springer, Dordrecht, 2012, xx?432.

13. Akhiezer, N.I., and I.M. Glazman. 1993. Theory of linear operators in Hilbert space. Translated from

the Russian and with a preface by Merlynd Nestell, reprint of the 1961 and 1963 translations, New

York: Dover Publications, Inc.

14. Taylor, A.E., and D.C. Lay. 1980. Introduction to functional analysis. 2nd ed. New York: Wiley.

15. Goldberg, S. 1966. Unbounded linear operators: Theory and applications. New York: McGraw-Hill.
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