
Functional Analysis,
Approximation and
Computation
xx (yyyy), zzz–zzz

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let T be a densely defined closed operator between Banach spaces X and Y. A concept
of approximation numbers, called T–approximation numbers, is considered for T–bounded operators A
between Banach spaces X and Z with their domains contained in X, and some properties of such T–
approximation numbers are studied. The theorems proved in the paper include a result on approximation
of T–approximation numbers of A using T–approximation numbers of An, where {An} is a certain sequence
of operators which converge to A in some sense. This result is analogous to a theorem proved recently by
the authors in [3] for bounded linear operators.

1. Introduction

Let X, Y and Z be normed linear spaces. For a linear operator T between normed linear spaces, the
domain of T is denoted by D(T) and the range of T is denoted by R(T). Let L(X,Y) be the class of all linear
operators with D(T) ⊆ X and R(T) ⊆ Y, CL(X,Y) be the class of all closed and densely defined operators in
L(X,Y) and let BL(X,Y) be the class of all bounded linear operators from X to Y. The norm on a normed
linear space is denoted by ‖ · ‖. For k ∈ N, we denote by Fk(X,Y) the class of all operators in BL(X,Y) of
rank less than k. We use the abbreviations L(X), CL(X), BL(X) and Fk(X) for L(X,X), CL(X,X), BL(X,X) and
Fk(X,X), respectively.

We recall that, for T ∈ BL(X,Y) and k ∈ N, the kth approximation number of T, denoted by sk(T), is
defined by

sk(T) := inf {‖T − F‖ : F ∈ Fk(X,Y)}.
The concept of approximation numbers of operators in BL(X,Y) is a generalization of the concept of singular
values of compact operators between Hilbert spaces. For a study on approximation numbers and their
properties, one may refer to [12], where approximation numbers are used to study the geometry of Banach
spaces. The convergence properties of approximation numbers are also found useful in estimating the error
while solving operator equations [14].
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Attempts were made in literature to define concepts analogous to approximation numbers for operators
which are not necessarily bounded linear. For example, in [2], the authors have extended the concept
of approximation numbers to operators in certain subclass of CL(X,Y); and in [5], similar concepts were
defined for a larger subclass of CL(X,Y), namely, relatively bounded operators between Hilbert spaces. In [14],
a concept similar to approximation numbers was defined for bounded nonlinear operators, and some of
its properties and applications to projection methods for solving some operator equations were given. A
concept similar to approximation numbers was defined in [11] for elements in Banach algebras and in [13],
certain numbers analogous to approximation numbers were defined for matrices over integral domains.

In Section 2, we introduce a concept of T–approximation numbers for T–bounded operators, where T is a
densely defined closed operator between normed linear spaces, and study some properties. The concept of
T–approximation numbers is akin to the concept introduced in [5] for operators between Hilbert spaces. In
Section 3, we prove a modified form of a convergence result proved in [3] (Theorem 2.8) for approximation
numbers of bounded linear operators. Then we prove a result analogous to Theorem 2.8 in [3] for the
generalized approximation numbers defined for relatively bounded operators in Section 2.

2. Approximation Numbers for Relatively Bounded Operators

Let X and Y be Banach spaces and T ∈ CL(X,Y). Recall that the graph norm on D(T), denoted by ‖ · ‖T, is
defined by

‖x‖T := ‖x‖ + ‖Tx‖, x ∈ D(T).

It is known that D(T) with ‖ · ‖T is a Banach space. We denote this Banach space by XT. Also, if A ∈ L(X,Z),
then the space D(A) ∩D(T) with the norm ‖ · ‖T is denoted by DT(A).

Now we introduce a concept of approximation numbers for T-bounded operators A ∈ L(X,Z) using a
specified closed operator T ∈ CL(X,Y) and the corresponding space XT, where Z is also a Banach space.

Definition 2.1. An operator A ∈ L(X,Z) is said to be T-bounded or relatively bounded with respect to T if there
exists a nonnegative real number α such that

‖Ax‖ ≤ α‖x‖T ∀ x ∈ D(T) ∩D(A).

We may observe that the above definition is equivalent to the standard definition of T-boundedness (cf.
Kato [8]), namely, A ∈ L(X,Y) is T-bounded if and only if there exist nonnegative real numbers a and b such
that

‖Ax‖ ≤ a‖x‖ + b‖Tx‖ ∀ x ∈ D(T) ∩D(A).

Now, suppose A ∈ L(X,Z) is a T-bounded operator. Then it can be seen that the operator Â : DT(A)−→Z,
defined by

Âx = Ax, x ∈ DT(A),

is a bounded operator. Using the operator Â, we define the concept of approximation numbers for T-
bounded operators. Note that T is always T-bounded and ‖T̂‖ ≤ 1.

Definition 2.2. Let A ∈ L(X,Z) be a T-bounded operator and k ∈N. Then the kth approximation number of A with
respect to T, or the T-approximation number of A is defined by

ŝk(A) = sk(Â),

where sk(Â) denotes the kth approximation number of the bounded operator Â.

It follows from the definition and well known properties of approximation numbers (cf. [12]) that {̂sk(A)} is
a nonincreasing sequence of nonnegative real numbers and ŝ1(A) = ‖Â‖. In order to prove some properties
of the T-approximation numbers, we shall make use of the following lemma that gives some elementary
properties of T-bounded operators. In all the proofs of the results that follow, we make use of known
properties of approximation numbers given in [12].
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Lemma 2.3. Let k ∈N. The following properties hold for T-bounded operators.

(a) Suppose A1 and A2 are T-bounded operators in L(X,Z). Then A1 + A2 is a T-bounded operator in L(X,Z) and

̂A1 + A2 = Â1 + Â2 on DT(A1 + A2),

‖ ̂A1 + A2‖ ≤ ‖Â1‖ + ‖Â2‖.

(b) If A ∈ BL(X,Z), then A is T-bounded, DT(A) = XT and ‖Â‖ ≤ ‖A‖.

(c) If A ∈ L(X,Z) is T-bounded and B ∈ BL(Z,W), then BA ∈ L(X,W) is T-bounded, DT(BA) = DT(A), B̂A = BÂ
and ‖B̂A‖ ≤ ‖B‖ ‖Â‖.

(d) Let A ∈ L(X,Z) be T-bounded, invertible and A−1 ∈ BL(Z,X). Then Â is invertible, Â−1 = Â−1 and

‖Â−1‖ ≤ ‖A−1‖ + ‖TA−1‖.

In particular, if T itself satisfies the above hypothesis, then

‖T̂−1‖ ≤ 1 + ‖T−1‖.

Proof. (a). The proof follows by observing that DT(A1+A2) = DT(A1)∩DT(A2) and ‖(A1+A2)x‖ ≤ ‖A1x‖+‖A2x‖
for all x ∈ DT(A1 + A2).

(b). If A ∈ BL(X,Z), then D(A) = X. Hence DT(A) = D(A) ∩ D(T) = D(T). Also for x ∈ D(T),
‖Âx‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖ ≤ ‖A‖ ‖x‖T. This proves (b).

(c). If A ∈ L(X,Z) is T-bounded and B ∈ BL(Z,W), then D(BA) = D(A) and hence DT(BA) = DT(A). Also
for x ∈ DT(BA), we have B̂A(x) = B(Âx). Hence ‖B̂A‖ ≤ ‖B‖ ‖Â‖.

(d). First note that since A−1 ∈ BL(Z,X), TA−1 is a bounded operator. Also, Â−1 = Â−1, and for z ∈ Z,

‖Â−1z‖T = ‖A−1z‖T
= ‖A−1z‖ + ‖TA−1z‖
≤ (‖A−1‖ + ‖TA−1‖)‖z‖.

The particular case follows by taking T in place of A.

Proposition 2.4. For k ∈N, the following properties of T-approximation numbers hold.

(a) ŝk(T) ≤ 1.
(b) ŝk(B) ≤ sk(B) if B ∈ BL(X,Z).
(c) ŝk1+k2−1(A1 + A2) ≤ ŝk1 (A1) + ŝk2 (A2) for T-bounded operators A1,A2 ∈ L(X,Z).
(d) ŝk(BA) ≤ ‖B‖ ŝk(A) if A ∈ L(X,Z) is T-bounded and B ∈ BL(Z,W).

Proof. We have ŝk(T) = sk(T̂) ≤ ‖T̂‖ ≤ 1, which gives the conclusion in (a).

Part (b) follows from Lemma 2.3(b).

Now, let A1,A2 ∈ L(X,Z) be T-bounded operators. Let F1 ∈ BL(DT(A1),Z) and F2 ∈ BL(DT(A2),Z) be
such that rank(F1) < k1 and rank(F2) < k2. Then we see that F1 + F2 ∈ Fk(DT(A1 +A2),Z) with k = k1 + k2 − 1
and

‖( ̂A1 + A2) − (F1 + F2)‖ ≤ ‖Â1 − F1‖ + ‖Â2 − F2‖.
Hence sk( ̂A1 + A2) ≤ ‖Â1 − F1‖ + ‖Â2 − F2‖ for every F1 ∈ BL(DT(A1),Z) and F2 ∈ BL(DT(A2),Z) with
rank(F1) < k1 and rank(F2) < k2. Taking infimum over F1 and F2, we get

ŝk(A1 + A2) ≤ ŝk1 (A1) + ŝk2 (A2),
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with k = k1 + k2 − 1, proving (c).

For proving (d), let A ∈ L(X,Y) be a T-bounded operator, B ∈ BL(Y,Z), and let F ∈ Fk(DT(A),Y). Then by
Lemma 2.3 (c), BA is a T-bounded operator with DT(BA) = DT(A) and BF ∈ Fk(DT(A),Y). Since

‖(B̂A − BF)x‖ ≤ ‖B‖ ‖(Â − F)x‖ ∀ x ∈ DT(A),

we have
‖B̂A − BF‖ ≤ ‖B‖ ‖Â − F‖.

Hence we obtain ŝk(BA) ≤ ‖B‖ ŝk(A).

Proposition 2.5. Let A ∈ L(X,Z) be T-bounded, invertible, D(A) ⊆ D(T) and A−1 ∈ BL(Z,X). Then

ŝk(A) ≥ 1
‖A−1‖ + ‖TA−1‖ ∀ k ∈N.

In particular, if T is invertible and T−1 ∈ BL(Y,X), then

ŝk(T) ≥ 1
1 + ‖T−1‖ ∀ k ∈N.

Proof. We have, for all k ∈N, from Lemma 2.3,

1 = sk(IXT ) = sk(Â−1Â) ≤ sk(Â) ‖Â−1‖ ≤ ŝk(A)(‖A−1‖ + ‖TA−1‖).
From this, the required inequalities follow.

We close this section by giving a result for the reference operator T.

Theorem 2.6. Suppose X and Y are Hilbert spaces and T is invertible with T−1 ∈ BL(Y,X). Then

ŝk(T) := sk(T̂) ≥ 1
1 + sk(T−1)

∀ k ∈N.

If, in addition T−1 is compact, then
ŝk(T) = 1 ∀ k ∈N.

Proof. By Lemma 2.3(d), T̂−1 is a bounded operator and ‖T̂−1‖ ≤ 1 + ‖T−1‖. Now let P ∈ Fk(Y) be an
orthogonal projection. Then for y ∈ Y,

‖T̂−1y − T̂−1Py‖T = ‖T̂−1y − T̂−1Py‖ + ‖TT̂−1y − TT̂−1Py‖
= ‖T−1y − T−1Py‖ + ‖y − Py‖
≤ (1 + ‖T−1 − T−1P‖)‖y‖.

Hence ‖T̂−1 − T̂−1P‖ ≤ 1 + ‖T−1 − T−1P‖, so that, by Proposition 2.4.2 in [1],

sk(T̂−1) ≤ inf {1 + ‖T−1 − T−1P‖ : P ∈ Fk(Y)} = 1 + sk(T−1).

Therefore, using the relation sk1+k2−1(A1A2) ≤ sk1 (A1)sk2 (A2) for any two bounded operators A1 and A2
between normed linear spaces (cf. [12]),

1 = s2k−1(T̂−1T̂) ≤ sk(T̂−1)sk(T̂) ≤ (1 + sk(T−1))sk(T̂).

Thus, we obtain the required inequality.
Next, assume that T−1 is a compact operator. Then, by Theorem XI.10.1 in [7], we know that lim

k−→∞
sk(T−1) =

0. Hence, we have
1 ≤ lim

k−→∞
(1 + sk(T−1))sk(T̂) = lim

k−→∞
sk(T̂) ≤ ‖T̂‖ ≤ 1.

This shows that lim
k−→∞

sk(T̂) = 1. Since {sk(T̂)} is a nonincreasing sequence, we obtain sk(T̂) = 1 for all

k ∈N.
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3. On the convergence of T–approximation numbers

We recall the following theorem proved in [3].

Theorem 3.1. (cf. [3], Theorem 2.8) Let X be separable, and Z be a reflexive Banach space. Let A ∈ BL(X,Z), and
{Pn} and {Qn} be sequences of operators in BL(X) and BL(Z) respectively such that ‖Pn‖ ‖Qn‖ ≤ 1 for all n ∈N. For
n ∈N, let An := QnAPn. If Anx−→Ax for x ∈ X in the weak sense of convergence, then for each k ∈N,

lim
n−→∞

sk(An) = sk(A).

In this section, we explore the possibility of obtaining an analogous result for a T–bounded operator
A ∈ L(X,Z). For this purpose, first we prove a modified version of the above theorem in a specific case.

Let A ∈ BL(X,Z) and for n ∈ N, let Pn ∈ BL(X) and Qn ∈ B(Z) be operators satisfying ‖Pn‖ ‖Qn‖ ≤ 1.
Let An := QnAPn and Ãn := An |R(Pn): R(Pn)−→R(Qn), n ∈ N. We have shown in [4] that if, in addition,
the operators Pn are projections, then sk(An) = sk(Ãn) for all n ∈ N. In applications, often Pn and Qn are
projections of finite rank, and in that case, one may be more interested in the restrictions Ãn rather than An.
Since it is not easy to obtain a sequence of finite rank projections of norm 1 on general Banach spaces, we
prove an analogue of Theorem 3.1 by assuming that Pn’s are projections and Qn satisfies ‖Qn‖ ≤ 1 for all
n ∈ N. The proof of this result is similar to the proof of Theorem 2.8 given in [3]. However we give it here
for the sake of completeness. This result (Theorem 3.3) also helps in proving Theorem 3.4. For its proof, we
shall make use of the following lemma.

Lemma 3.2. Let Z be a normed linear space, A ∈ BL(X,Z) and {Pn} be a sequence of projections in BL(X) such that
Pnx−→x for every x ∈ X. Suppose there exists M > 0 such that ‖A|R(Pn )‖ ≤M for all n ∈N. Then ‖A‖ ≤M.

Proof. Since ‖A|R(Pn ) Pnx‖ ≤ ‖A|R(Pn )‖ ‖Pnx‖ ≤M‖Pnx‖ for all x ∈ X and n ∈N, we have, for every x ∈ X,

‖Ax‖ = lim
n−→∞

‖APnx‖
= lim

n−→∞
‖A|R(Pn ) Pnx‖

≤ M( lim
n−→∞

‖Pnx‖)
= M‖x‖

so that ‖A‖ ≤M.

Theorem 3.3. Let Z be Banach space and A ∈ BL(X,Z). For n ∈ N, let {Pn} be a sequence of projections in BL(X)
such that R(Pn) ⊆ R(Pn+1) and Pnx−→x for each x ∈ X, and let {Qn} be a sequence of operators in B(Z) such that
‖Qn‖ ≤ 1 and Qnz−→z for each z ∈ Z. For n ∈ N, let An := QnAPn and Ãn := An |R(Pn): R(Pn)−→R(Qn). Then for
each k ∈N,

sk(Ãn) ≤ sk(A) ∀n ∈N.
If, in addition, X is separable and Y is reflexive, then for each k ∈N,

lim
n−→∞

sk(Ãn) = sk(A).

Proof. For F ∈ Fk(X,Y) and n ∈N, we have QnFPn ∈ Fk(X,Y) and

‖Ãn −QnFPn |R(Pn) ‖ = ‖QnAPn |R(Pn) −QnFPn |R(Pn) ‖
= ‖QnA |R(Pn) −QnF |R(Pn) ‖
≤ ‖Qn(A − F)‖
≤ ‖A − F‖.

Hence sk(Ãn) ≤ ‖Ãn −QnFPn |R(Pn) ‖ ≤ ‖A − F‖. This is true for all F ∈ Fk(X,Y) so that sk(Ãn) ≤ sk(A).
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Now, let dn = sk(Ãn) and d = sk(A). Clearly, if d = 0, then dn = 0 for all n ∈ N. So, let d > 0, and let X
be separable and Y be reflexive Banach spaces. Assume that (dn) does not converge to d. Then there exists
an ε > 0 and an infinite set N1 ⊆ N such that dn < d − ε for all n ∈ N1. This implies that ‖Ãn − F̃n‖ < d − ε
for some F̃n ∈ Fk(R(Pn),Y) for all n ∈ N1. Hence, using the boundedness of {‖Pn‖} and {‖Qn‖}, it follows that
{‖F̃nPn‖} is also bounded.

Since X is separable, Y is reflexive and {F̃nPn} is inFk(X,Y), by Lemma 2.4 in [3], there exists a subsequence
{F̃n j Pn j} of {F̃nPn} and an operator F ∈ Fk(X,Y) such that F̃n j Pn j converges to F in the weak operator topology.

Now let x ∈ R(Pn j0
) for some j0 ∈ N with ‖x‖ = ‖Pn j0

x‖ = 1, and f ∈ Y′ be such that ‖ f ‖ = 1. Since
Ãn j Pn j x−→Ax as j→∞, there is a j1 ∈N such that

| f (Ãn j Pn j x) − f (Ax)| ≤ ‖Ãn j Pn j x − Ax‖ < ε
3
∀ j ≥ j1.

Similarly since F̃n j Pn j x−→Fx in the weak sense, there exists a j2 ∈N such that

| f (F̃n j Pn j x) − f (Fx)| < ε
3
∀ j ≥ j2.

Now let j3 = max{ j0, j1, j2}. Then, using the fact that ‖Pn j3
x‖ = ‖x‖ = 1, we have

| f (Ax − Fx)| ≤ | f (Ax) − f (Ãn j3
Pn j3

x)|
+| f (Ãn j3

Pn j3
x) − f (F̃n j3

Pn j3
x)| + | f (F̃n j3

Pn j3
x) − f (Fx)|

<
ε
3
+ ‖Ãn j3

Pn j3
x − F̃n j3

Pn j3
x‖ + ε

3

≤ ε
3
+ ‖Ãn j3

− F̃n j3
‖ + ε

3

<
ε
3
+ d − ε + ε

3

= d − ε
3
.

Since the above is true for all x ∈ R(Pn j0
) with ‖x‖ = 1, and f ∈ Y′with ‖ f ‖ = 1, we have ‖(A−F) |R(Pnj0

) ‖ ≤ d− ε3 .
Since j0 ∈ N was arbitrary, ‖(A − F) |R(Pnj0

) ‖ ≤ d − ε3 for all j0 ∈ N. Hence, by Lemma 3.2, ‖A − F‖ ≤ d − ε3 .
This leads to d ≤ d − ε3 , which is a contradiction. Hence dn−→d as n−→∞.

Now, the promised result on T-approximation numbers:

Theorem 3.4. Let X be a separable Banach space, Z be a reflexive Banach space which is separable and A ∈ CL(X,Z)
be a T-bounded operator with D(A)=D(T). For n ∈ N, let Pn ∈ BL(X) with R(Pn) ⊆ D(T) be finite rank projections
satisfying

1. Pnx−→x for each x ∈ X
2. R(Pn) ⊆ R(Pn+1) ⊆ D(T), n ∈N
3. TPnx−→Tx for each x ∈ D(T)

and Qn ∈ B(Z) be such that ‖Qn‖ ≤ 1 and Qnz−→z for all z ∈ Z. Let An := QnAPn and Ãn := An |R(Pn):
R(Pn)−→R(Qn). Then for n ∈N, Ãn is T–bounded and for each k ∈N,

lim
n−→∞

ŝk(Ãn) = ŝk(A).

Proof. Let n ∈N. Since A is a closed operator and Pn ∈ BL(X) such that R(Pn) ⊆ D(A), we have APn ∈ BL(X,Z)
for all n ∈ N. Therefore, Ãn := An |R(Pn): R(Pn)−→R(Qn) is also a bounded operator. In particular, Ãn is
T–bounded. We may recall that Â is a bounded operator from XT to Y. Now, define P̃n : XT−→XT by

P̃nx = Pnx ∀ x ∈ XT.
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Clearly P̃2
n = P̃n for all n ∈N.

Now, since T is a closed operator and Pn ∈ BL(X) such that R(Pn) ⊆ D(T), we have TPn ∈ BL(X,Y) for
all n ∈ N. Also, by conditions (1) and (3) on Pn, it follows that (‖Pn‖) and (‖TPn‖) are bounded. Therefore,
from the relations

‖P̃nx‖T = ‖Pnx‖T = ‖Pnx‖ + ‖TPnx‖,

‖P̃nx − x‖T = ‖Pnx − x‖T = ‖Pnx − x‖ + ‖TPnx − Tx‖,
we see that P̃n ∈ BL(XT) for all n ∈N and (‖P̃n‖) is bounded.

Using the separability of X and Z, it can be seen that the space XT is also separable. Hence, by Theorem

3.3, we have lim
n−→∞

sk(QnÂP̃n |R(P̃n)
) = sk(Â). Hence the proof is complete if we show that sk(QnÂP̃n |R(P̃n)

) = sk(̂̃An)
for all n ∈N.

To see this, note that the operator ̂̃An is from the space R(Pn) with ‖ · ‖T to R(Qn) and QnÂP̃n |R(P̃n)
is from

R(P̃n) with ‖ · ‖T to Z, and for x ∈ R(Pn),

̂̃Anx = QnAx = QnÂP̃n |R(P̃n )
x.

Hence ‖̂̃An‖ = ‖QnÂP̃n |R(P̃n )
‖ for all n ∈ N. Now for each finite rank operator of rank less than k from R(Pn)

with norm ‖ · ‖T to Z, we have

‖̂̃An − F‖ = ‖QnÂP̃n |R(P̃n )
− F‖.

Taking infimum over F, we get sk(̂̃An) = sk(QnÂP̃n |R(P̃n)) and this completes the proof.

Definition 3.5. Let T ∈ CL(X,Y) and for n ∈N, let Pn be projection operators satisfying the assumptions (1)-(3) in
Theorem 3.4. Then we say that the sequence {Pn} is admissible for the operator T.

The concept of admissible sequence of projections was defined and used in [9]. In Example 3.6 below, we
illustrate Theorem 3.4 and the last part of Theorem 2.5 by considering an admissible sequence of projections.
For this purpose, we shall make use of a result from [4] which states that if T is a bounded linear operator
from a normed linear space X to a normed linear space Y and if there exists α ≥ 0 such that ‖T(x)‖ ≥ α‖x‖
for every x in a subspace M of X, then sk(T) ≥ α for all k not exceeding the dimension of M. This is Theorem
2.8 of [4].

Example 3.6. Let X = `p, 1 < p < ∞ and D(T) := {(x1, x2, . . .) ∈ `p : (x1, 2x2, 3x3, . . .) ∈ `p}. Let T : D(T)−→`p
be the operator defined by

Tx = (x1, 2x2, 3x3 . . .), x = (x1, x2, x3, . . .) ∈ D(T).

Then it is seen that T is a closed and densely defined operator with compact inverse. Now consider the
projections Pn defined by

Pnx = (x1, x2, . . . , xn, 0, 0, . . .), x = (x1, x2, x3 . . .) ∈ `p.

Then Pn ∈ BL(`p) satisfy all the conditions given in Theorem 3.4. Now, let m < n and define

Xm,n = {x ∈ D(T) : x j = 0 for j ≤ m and j > n}.

Let x ∈ Xm,n. Then

(m + 1)p‖x‖p ≤ ‖Tx‖p =
n∑

j=m+1

jp|x( j)|p ≤ np‖x‖p
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and hence
(m + 1)‖x‖ ≤ ‖Tx‖ ≤ n‖x‖.

Also ‖x‖T = ‖x‖ + ‖Tx‖ ≤ (n + 1) ‖x‖. Hence

‖T̂x‖ ≥ (m + 1) ‖x‖ ≥ m + 1
n + 1

‖x‖T.

Let n = m + k. Then dim(Xm,n) = k and hence (by [4], Theorem 2.8)

sk(T̂) ≥ m + 1
m + k + 1

≥ 1
1 + k

m+1

∀m ∈N.

This gives sk(T̂) = ŝk(T) = 1 for all k ∈N. By a similar argument for Tn := PnTPn, we get

1 ≥ ŝk(Tn) ≥ 1
1 + k

n−k+1

∀ n ∈N, n ≥ k.

Hence ŝk(Tn) converges to 1 as n tends to∞.

Remark 3.7. In Theorem 3.3 and Theorem 3.4 one can remove the assumption of reflexivity on the codomain
Z by assuming it to be the dual space of some separable Banach space.

Remark 3.8. In Definition 2.2, instead of taking ‖ · ‖T on D(T), one can take ‖ · ‖T,p, 1 ≤ p < ∞ defined

by ‖x‖T,p = (‖x‖p + ‖Tx‖p)
1
p and define generalized approximation numbers analogous to T-approximation

numbers. Similar results can be proved for these numbers also. Note that, for p = 1 this definition coincides
with the Definition 2.2, and for p = 2 it coincides with the τ∗-numbers defined in [5] for relatively bounded
operators between Hilbert spaces.
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