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Abstract. Let ε > 0, n a non-negative integer, and A a complex unital
Banach algebra. Define γn : A × C → [0, ∞] by

γn(a, z) =

{
‖(z − a)−2n‖−1/2n , if (z − a) is invertible

0, if (z − a) is not invertible.

The (n, ε)-pseudospectrum Λn,ε(a) of an element a ∈ A is defined by
Λn,ε(a) := {λ ∈ C : γn(a, λ) ≤ ε}. We show that γ0 is Lipschitz on
A×C, γn is uniformly continuous on bounded subsets of A×C for n ≥ 1,
and γn is Lipschitz on some particular domains for n ≥ 1. Using these
properties, we establish that the map (ε, a) �→ Λn,ε(a) is continuous at
(ε0, a0) if and only if the level set {λ ∈ C : γn(a0, λ) = ε0} does not
contain any non-empty open set. In particular, this happens when a
is a compact operator on a Banach space or a bounded operator on a
Hilbert space or on an Lp space with 1 ≤ p ≤ ∞. We also give examples
of operators where this condition is not satisfied, and consequently, the
map is not continuous.
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1. Introduction

The task of computing spectra of operators on Banach spaces, or more gener-
ally, of elements of a Banach algebra, is both interesting as well as important,
due to the connection of this problem to differential and integral equations
and quantum mechanics. The main difficulty in this is that the map that
takes an element a to its spectrum σ(a) is, in general, not continuous (see
[6,13]). It was pointed out by Hansen in [13] that because of this discon-
tinuity, while computing the spectra using computers, a small error in the
input data may lead to unacceptable errors in the result. Hence he suggested
the computation of different sets though the final aim may be to estimate
the spectrum. These sets though different from the spectra should be good
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approximations to spectra and at the same time should depend continuously
on the elements. Hansen [13] also suggested that (n, ε)-pseudospectra are ex-
cellent candidates for such sets as they satisfy both these requirements in
case of operators on Hilbert spaces. We begin by recalling the definition of
an (n, ε)-pseudospectrum.

Let A be a unital complex Banach algebra and a ∈ A. For an integer
n ≥ 0 and ε > 0, the (n, ε)-pseudospectrum of a (see [12]) is defined by

Λn,ε(a) = {λ ∈ C : γn(a, λ) ≤ ε},

where γn(a, .) : C → [0,∞] is defined by

γn(a, z) =

{
‖(z − a)−2n‖−1/2n

, if (z − a) is invertible
0, if (z − a) is not invertible.

The (0, ε)-pseudospectrum is popularly known as ε-pseudospectrum, denoted
by Λε(a), and has been studied extensively for non-normal matrices and op-
erators over the last few decades. The monograph [23] by Trefethen and
Embree contains a lot of information on the ε-pseudospectrum and its ap-
plications. Also refer to [2–5,9,16,18,21,22] for some pioneering work on ε-
pseudospectra.

The notion of (n, ε)-pseudospectrum is relatively new, and this theory
has emerged as a generalization of ε-pseudospectral theory. It was introduced
originally for operators on separable Hilbert spaces by Hansen in [12] as a tool
for the numerical approximation of spectral problems and was further devel-
oped for Banach space operators in [19] and to the elements of an arbitrary
Banach algebra in [7,15].

One of the significant changes that appear while studying these sets
in Banach space setting is that the continuity property may be lost. The
possible occurrence of a constant resolvent norm of a Banach space oper-
ator on an open set is cited to be the main reason of discontinuity of the
ε-pseudospectrum map. In this regard, we refer to the article [1], which gath-
ers a good amount of information on the convergence of pseudospectra for
Banach space and Hilbert space operators. Whereas the discontinuity of the
ε-pseudospectrum map a �→ Λε(a) is well known (for instance, see [17, Exam-
ple 4.9] and [20]) for Banach space operators, no significant study has been
done so far for (n, ε)-pseudopsectrum in a general Banach algebra setting.

In Sect. 3, we establish some essential properties of the approximating
functions γn. We show that the functions γn are continuous for all n ≥ 0,
uniformly continuous on bounded sets (in fact, on any unbounded strip
{(a, z) : ‖a‖ ≤ R} for any R > 0) for n ≥ 1 and Lipschitz on some “partic-
ular” domains in A × C for n ≥ 1 (see Theorem 3.1). Further, we provide
some counter examples to show that, in contrast to γ0, the functions γn with
n ≥ 1 are neither Lipschitz on bounded sets, nor are uniformly continuous
on A × C (see Examples 3.2, 3.3).

In Sect. 4, using some of these properties of the functions γn, we collect
several equivalent conditions for the continuity of the map (ε, a) �→ Λn,ε(a) at
(ε0, a0). Not surprisingly, these are equivalent to the condition that the level
set {λ ∈ C : γn(a0, λ) = ε0} does not contain any non-empty open subset.
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The question on the above level set to contain a non-empty open set
goes back to Globevnik (see [11]), who was the first to pose the question
“can ‖(λ − a)−1‖ be constant on an open subset of the resolvent set ρ(a) of
a?” and answered it partially by showing that the above was not possible
when (i) ρ(a) is connected, and (ii) a is a bounded linear operator on a
complex uniformly convex Banach space (see Definition 2.1). Independently,
some related results were again established by Böttcher and Daniluk (see
[2,3]). Shargorodosky combined their results and proved that the resolvent
norm of a bounded linear operator can not be constant on an open set when
the underlying space X or its dual X ′ is a complex uniformly convex Banach
space (see [20]). This result covers finite dimensional spaces, Hilbert spaces
and Lp(μ) spaces with 1 ≤ p ≤ ∞. Further, he showed the existence of a
bounded linear operator A on a Banach space X with ‖(A − λ)−1‖ being
constant in a neighborhood of λ = 0 (see [20, Theorem 3.1]).

Given any m ≥ 1, we establish the existence of a bounded invertible
linear operator T on a Banach space X such that ‖(T − z)−m‖ is constant
in an open set (see Example 4.10), and hence the pseudospectral map is
discontinuous.

The essential spectra of bounded linear operators T are the (usual)
spectra of the respective coset T +K(X) in the Calkin algebra B(X)/K(X).
Thus, trying to use pseudospectral and n-pseudospectral techniques for the
approximation of essential spectra naturally raises the necessity to have these
tools available in Banach algebras.

Therefore the aim of the present paper is twofold: extending previous
results on ε-pseudospectra in the operator context to (n, ε)-pseudospectra,
and developing these tools in the more general Banach algebra case.

2. Notation, Basic Definitions and Known Results

Throughout, by a Banach algebra we mean a complex Banach algebra with
unity 1 and ‖1‖ = 1. For a ∈ A, the spectrum σ(a) of a is defined by

σ(a) := {λ ∈ C : λ − a is not invertible}.

The complement of σ(a) is known as the resolvent set of a, and it will be de-
noted by ρ(a). B(X) and K(X) denote the set of all bounded linear operators
and compact operators on a complex Banach space X respectively. For r > 0
and λ ∈ C, B(λ, r) := {z ∈ C : |z − λ| < r}, D(λ, r) := {z ∈ C : |z − λ| ≤ r}.
For Ω ⊆ C and δ > 0, Ω+D(0, δ) := ∪

λ∈Ω
D(λ, δ). cl(Ω) will denote the closure

of Ω. We will discuss the convergence of a sequence of non-empty compact
sets in the complex plane with respect to the Hausdorff metric, defined by
the following: for two non-empty compact sets Ω1,Ω2 ⊆ C,

dH(Ω1,Ω2) = max{ sup
λ∈Ω2

d(λ,Ω1), sup
λ∈Ω1

d(λ,Ω2)},

where d(λ,Ω) = inf
μ∈Ω

|λ − μ|.



32 Page 4 of 17 K. Dhara et al. IEOT

Definition 2.1 (Complex uniformly convex [10,20]). A Banach space X is
said to be complex uniformly convex (uniformly convex) if ∀ ε > 0∃ δ > 0
such that

(x, y ∈ X, ξ ∈ D(0, 1)(|ξ| ≤ 1, ξ ∈ R), ‖x + ξy‖ ≤ 1 and ‖y‖ ≥ ε)

⇒ ‖x‖ ≤ 1 − δ.

Remark 2.2. Since ‖ξ̄x + ξξ̄y‖ = |ξ̄|‖x + ξy‖ ∀ξ ∈ C, it follows that uniform
convexity implies complex uniform convexity. So Hilbert spaces, 	p and Lp

spaces with 1 < p < ∞ are complex uniformly convex. It is known that L1

is complex uniformly convex (see [10]) but not uniformly convex, L∞ is not
complex uniformly convex, but its dual (L∞)′ is complex uniformly convex
(see [20]).

Definition 2.3 (Analytic map). Let Ω be an open subset of C. A function
f : Ω → A is said to be analytic on Ω if for every λ0 ∈ Ω there is an element
of A, denoted by f ′(λ0), such that

lim
λ→λ0

∥∥∥∥f(λ) − f(λ0)
λ − λ0

− f ′(λ0)
∥∥∥∥ = 0.

Theorem 2.4 (Maximum Modulus Theorem [8, p. 230]). Let Ω be an open
connected subset of C and X be a Banach space. Suppose f : Ω → X is an an-
alytic map. Then ‖f(z)‖ has no maximum on Ω, unless ‖f(z)‖ is identically
constant.

3. Properties of the Functions γn

In this section, we explore several useful properties of the functions γn which
play a vital role in the computation of (n, ε)-pseudospectra. Whereas some
elementary properties of γn have been studied in [7], a more detailed inves-
tigation is done in this section.

Theorem 3.1. Let A be a Banach algebra. Let n ≥ 0. For (a, z) ∈ A × C,
‖(a, z)‖ := ‖a‖ + |z|. Then the following statements hold.

1. |γ0(a + b, z + w) − γ0(a, z)| ≤ ‖b‖ + |w| ∀ (a, z), (b, w) ∈ A × C. Thus γ0

is Lipschitz on A × C.

2. Let m = 2n, p(x) =
m∑

k=1

(
m
k

)
xm−k, (a, z), (b, w) ∈ A × C with ‖b‖ + |w| ≤

1. Then

|γn(a + b, z + w) − γn(a, z)| ≤ (p(‖a‖ + |z|)1/m)(‖b‖ + |w|)1/m.

Thus γn is continuous on A×C. Moreover, it is Hölder continuous and
hence it is uniformly continuous on bounded subsets of A × C.

3. γn(a, z) is Lipschitz on domains where “z is dominating”.
More precisely, let n > 0,m = 2n, R > 0 and 0 < 1 − m1/m

2 < r < 1
2 .

Let A(R, r) := {(a, z) ∈ A × C : ‖a‖ ≤ R, |z| ≥ R+1
r }. Then ∀(a, z) ∈

A(R, r) and (b, w) ∈ A × C with ‖b‖ + |w| ≤ 1, we have
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|γn(a + b, z + w) − γn(a, z)| ≤ (1 + r)m+2

(1 − r)4m
(‖b‖ + |w|).

Thus γn is Lipschitz on A(R, r).
4. γn is uniformly continuous on {(a, z) ∈ A × C : ‖a‖ ≤ R} for each

R > 0.

Proof. 1. Let a ∈ A. Define

γ(a) :=

{
‖a−1‖−1, if a is invertible
0, otherwise.

Note that for every a ∈ A,

‖a‖ = sup
{‖ax‖

‖x‖ : x ∈ A, x �= 0
}

= sup {‖ax‖ : x ∈ A, ‖x‖ = 1} .

Then for every invertible a

γ(a) = ‖a−1‖−1 = inf {‖ax‖ : x ∈ A, ‖x‖ = 1} .

If ‖b‖ < ‖a−1‖−1 then a + b = a(1 + a−1b) is invertible since ‖a−1b‖ <
1. Thus, if a is invertible but a + b is not invertible then necessarily
‖b‖ ≥ ‖a−1‖−1, hence |γ(a) − γ(a + b)| ≤ ‖b‖. The same applies to the
similar case with a not invertible but a + b invertible. In case both are
not invertible, γ(a) = γ(a + b) = 0. If both are invertible then

‖(a + b)−1‖−1 = inf{‖(a + b)x‖ : ‖x‖ = 1}
≤ inf{‖ax‖ + ‖bx‖ : ‖x‖ = 1}
≤ inf{‖ax‖ : ‖x‖ = 1} + ‖b‖ = ‖a−1‖−1 + ‖b‖.

Similarly, with a replaced by a+b and b by −b, we finally get in all cases
that |γ(a) − γ(a + b)| ≤ ‖b‖. Since γ0(a, z) = γ(z − a) for all a ∈ A and
z ∈ C, it follows that γ0 is Lipschitz on A×C with Lipschitz constant 1.

2. Let a, b ∈ A with ‖b‖ ≤ 1.
For a and a + b both invertible, we have

‖(a + b)−m‖− 1
m = (inf{‖(a + b)mx‖ : ‖x‖ = 1})

1
m

≤ (inf{‖amx‖ + p(‖a‖)‖b‖ : ‖x‖ = 1})
1
m

≤ (inf{‖amx‖ : ‖x‖ = 1} + p(‖a‖)‖b‖)
1
m

≤ (inf{‖amx‖ : ‖x‖ = 1})1/m + (p(‖a‖)‖b‖)
1
m

= ‖a−m‖− 1
m + (p(‖a‖)‖b‖)

1
m

and further,

‖(a + b)−m‖− 1
m ≥ (inf{‖amx‖ − p(‖a‖)‖b‖ : ‖x‖ = 1})

1
m

≥ (inf{‖amx‖ : ‖x‖ = 1})1/m − (p(‖a‖)‖b‖)
1
m

≥ ‖a−m‖− 1
m − (p(‖a‖)‖b‖)

1
m .

So, combining the above two, we have

|‖(a + b)−m‖− 1
m − ‖a−m‖− 1

m ‖| ≤ (p(‖a‖)‖b‖)
1
m .
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Now suppose that a is invertible, but a+b is not invertible. Then neces-
sarily ‖b‖ ≥ ‖a−1‖−1 holds, and with the convention ‖(a + b)−1‖ = ∞,
we have ‖(a + b)−m‖−1/m = 0. Therefore

‖a−m‖− 1
m ≤ ‖a−1‖−1 ≤ ‖b‖ ≤ ‖b‖ 1

m

≤ ‖(a + b)−m‖− 1
m + (p(‖a‖)‖b‖)

1
m ,

as ‖b‖ ≤ 1 and p(‖a‖) ≥ 1 by the definition of p. Analogously, if a + b
is invertible, but a is not, then

‖(a + b)−m‖− 1
m ≤ ‖(a + b)−1‖−1 ≤ ‖a−m‖− 1

m + (p(‖a‖)‖b‖)
1
m .

We therefore have

|‖(a + b)−m‖− 1
m − ‖a−m‖− 1

m ‖| ≤ (p(‖a‖)‖b‖)
1
m

in all cases. Replacing a by z − a and b by w − b finally gives the claim.
3. Consider the function f(x) = x− 1

m . For sufficiently small h we have that
(e.g., look at its Taylor expansion)

|f(x) − f(x ± h)| ≤ (1 + r)|h|
mx1+ 1

m

uniformly for all x ∈
[

1
2m

, 2m

]
.

Next, observe that for all ‖a‖ ≤ R, ‖b‖ ≤ 1 and |z| ≥ 1
r (R + 1) ≥

1
r (‖a‖ + ‖b‖),

|h| :=

∣∣∣∣∣
∥∥∥∥∥
(

1 − a + b

z

)−m
∥∥∥∥∥ −

∥∥∥∥(
1 − a

z

)−m
∥∥∥∥
∣∣∣∣∣

≤
∥∥∥∥∥
(

1 − a + b

z

)−m

−
(
1 − a

z

)−m
∥∥∥∥∥

≤
∥∥∥∥∥
(

1 − a + b

z

)−m
∥∥∥∥∥

∥∥∥∥(
1 − a

z

)m

−
(

1 − a + b

z

)m∥∥∥∥
∥∥∥∥(

1 − a

z

)−m
∥∥∥∥

≤
(

1
1 − r

)m m∑
k=1

(
m

k

)∥∥∥1 − a

z

∥∥∥m−k
∥∥∥∥ b

z

∥∥∥∥
k (

1
1 − r

)m

≤
(

1
1 − r

)2m ‖b‖
|z|

(
m

∥∥∥1 − a

z

∥∥∥m−1

+
‖b‖
|z|

m∑
k=2

(
m

k

) (
1

1 − r

)m−k ∥∥∥∥ b

z

∥∥∥∥
k−2 )

.

If ‖b‖
|z| is sufficiently small the last factor can actually be further esti-

mated such that

|h| ≤
(

1
1 − r

)4m

m
‖b‖
|z| ,

thus, with small ‖b‖ this |h| gets as small as desired, even uniformly for
all large |z|. The last estimation can be done in the following way.
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Suppose K =
(

m
∥∥1 − a

z

∥∥m−1 + ‖b‖
|z|

m∑
k=2

(
m
k

) (
1

1−r

)m−k ∥∥ b
z

∥∥k−2
)

. Now

it is enough to show that K ≤ m
(

1
1−r

)2m

. Since ‖b‖
|z| < r < 1+r < 1

1−r ,
we have

K ≤ m

(
1

1 − r

)m−1

+
(

1
1 − r

) m∑
k=2

(
m

k

) (
1

1 − r

)m−k+k−2

≤
(

1
1 − r

)m−1 (
m + 2m −

(
m

1

)
−

(
m

0

))

≤ 2m

(
1

1 − r

)m−1

≤ m

(
1

1 − r

)2m (
since 2 <

m1/m

(1 − r)
and

1
1 − r

> 1
)

,

as desired. Now, we see for all ‖a‖ ≤ R and |z| ≥ 1
r (R + 1) and small

‖b‖ (independent of a and z) that

γn(a, z) − γn(a + b, z)|

=

∣∣∣∣∣∣|z|
∥∥∥∥(

1 − a

z

)−m
∥∥∥∥

− 1
m

− |z|
∥∥∥∥∥
(

1 − a + b

z

)−m
∥∥∥∥∥

− 1
m

∣∣∣∣∣∣
= |z|

∣∣∣∣f
(∥∥∥∥(

1 − a

z

)−m
∥∥∥∥
)

− f

(∥∥∥∥(
1 − a

z

)−m
∥∥∥∥ + h

)∣∣∣∣
and further, by the above estimates for f(x) and h,

|γn(a, z) − γn(a + b, z)| ≤ |z| (1 + r)
m‖(1 − a

z )−m‖1+ 1
m

|h|

≤ |z| (1 + r)‖(1 − a
z )m‖1+ 1

m

m

m‖b‖
(1 − r)4m|z|

=
(1 + r)m+2

(1 − r)4m
‖b‖.

For perturbations z + w of the second variable z take into account that
γn(a + b, z + w) = γn(a + b − w, z). Consequently, γn is Lipschitz on
{(a, z) ∈ A × C : ‖a‖ ≤ R, |z| ≥ 1

r (R + 1)}.
4. Let R > 0. By (3), it follows that γn is uniformly continuous on {(a, z) ∈

A×C : ‖a‖ ≤ R, |z| ≥ 1
r (R+1)}. Also by (2), γn is uniformly continuous

on {(a, z) ∈ A × C : ‖a‖ ≤ R, |z| ≤ 1
r (R + 1)}. Hence γn is uniformly

continuous on {(a, z) ∈ A × C : ‖a‖ ≤ R}. �

We now give an example which shows that, in contrast to γ0, the func-
tions γn with n ≥ 1 are not Lipschitz, even on bounded sets.

Example 3.2. Let A(δ) = a(δ)V be the operator on 	2(Z) given by the shift
operator V : (xi) �→ (xi+1) and the operator of multiplication a(δ)I with the
sequence a(δ) = (a(δ)i) where a(δ)0 = δ and a(δ)i = 1 for all i �= 0.
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Then ‖A(δ)m‖ = 1 and ‖A(δ)−m‖−1 = δ ∀m ≥ 1. Let n ≥ 1 and
take m = 2n. Then γn(A(δ), 0) = δ

1
m for every δ ∈ (0, 1). On the other

hand, B = bV with b0 = 0 and bi = 1 for all i �= 0 is not invertible, hence
γn(B, 0) = 0. Since ‖A(δ) − B‖ = δ we have

γn(A(δ), 0) − γn(B, 0)
‖A(δ) − B‖ → ∞ as δ → 0.

Thus γn is not Lipschitz.

We finally give an example which shows that the functions γn with n ≥ 1
are not uniformly continuous on A × C.

Example 3.3. Let A(δ) = a(δ)V be the operator on 	2(Z) given by the shift
operator V : (xi) �→ (xi+1) and the operator of multiplication a(δ)I with the
sequence a(δ) = (a(δ)i) where a(δ)0 = δ and a(δ)i = δ−1 for all i �= 0 and
0 < δ < 1.

Then ‖Am‖ = δ−m and ‖A−m‖−1 = δ−m+2 ∀m > 1. Let n ≥ 1 and
choose m = 2n. Thus γn(A(δ), 0) = δ−1+ 2

m ≥ 1 for every δ ∈ (0, 1). On the
other hand, B(δ) = b(δ)V with b(δ)0 = 0 and b(δ)i = δ−1 for all i �= 0 is not
invertible, hence γn(B(δ), 0) = 0. Since ‖A(δ)−B(δ)‖ = δ → 0 as δ → 0 but

|γn(A(δ), 0) − γn(B(δ), 0)| ≥ 1 ∀ δ ∈ (0, 1),

thus γn is not uniformly continuous.

The following proposition improves the result of Hansen [14] on the
local uniform convergence of the approximating functions to their uniform
convergence on the whole complex plane.

Proposition 3.4. Let A be a Banach algebra, a ∈ A and n ≥ 0. Suppose {ak}
is a sequence in A such that ak → a as k → ∞. Then γn(ak, z) → γn(a, z)
as k → ∞ uniformly on C.

Proof. There exists M > 0 such that ‖a‖ ≤ M and ‖ak‖ ≤ M ∀ k. Let η > 0.
Since γn is uniformly continuous on E × C where E := {b ∈ A : ‖b‖ ≤ M},
by Theorem 3.1(4), ∃ δ > 0 such that

(b, z), (c, w) ∈ E × C and ‖b − c‖ + |z − w| < δ ⇒ |γn(b, z) − γn(c, w)| < η.

Again, there exists k0 such that ‖a − ak‖ < δ ∀ k ≥ k0. In particular, for all
k ≥ k0, we have

|γn(ak, z) − γn(a, z)| < η ∀z ∈ C.

Thus {γn(ak, z)} converges uniformly with respect to z ∈ C to γn(a, z). �

4. Main Results

In [7], it is shown that the map ε �→ Λn,ε(a) is right continuous. Thus the map
is continuous whenever it is left continuous. In the following proposition, we
study some equivalent conditions for the left discontinuity of the above map.
These conditions are not ‘completely new’ in the sense that their analogies
either for usual pseudospectra or for (n, ε)-pseudospectra for Hilbert space
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operators (see [14,17,20]) are known to be true. Here, we present those results
in an organized way with elementary proofs in the generalized setting of a
Banach algebra.

Proposition 4.1. Let A be a Banach algebra, n ≥ 0 and a ∈ A. Then for a
fixed ε0 > 0, the following statements are equivalent:

1. The map ε �→ Λn,ε(a) is left discontinuous at ε0.
2. The level set {λ ∈ C : γn(a, λ) = ε0} contains a non-empty open set.
3. cl({λ ∈ C : γn(a, λ) < ε0}) � {λ ∈ C : γn(a, λ) ≤ ε0}.

Proof. For ε > 0, let Aε = Λn,ε(a).
1 ⇒ 2. Suppose 1 holds. Hence ∃ r > 0 such that ∀ δ > 0 ∃ ε > 0 such that

ε0 − δ < ε < ε0 and dH(Aε, Aε0) ≥ r.

Consider a sequence {δm} such that 0 < δm < ε0 ∀m and δm → 0 as m → ∞.
Then for each m, ∃ εm > 0 such that

ε0 − δm < εm < ε0 and dH(Aεm , Aε0) ≥ r.

Now Aεm ⊆ Aε0 ∀m. Hence for each m, ∃λm ∈ Aε0 such that d(λm, Aεm) ≥ r.
Since Aε0 is compact, {λm} has a convergence subsequence. By renaming
λm, if required, we may assume that λm → λ0 ∈ Aε0 , as m → ∞. Since
λ0 ∈ Aε0 , we have γn(a, λ0) ≤ ε0. On the other hand, since λm /∈ Aεm , we
have γn(a, λm) > εm > ε0−δm for each m. Since γn(a, z) is continuous at each
z ∈ C (by Theorem 3.1(2)), taking limit as m → ∞, we have γn(a, λ0) ≥ ε0.
Hence γn(a, λ0) = ε0.

Also ∃m0 such that |λm − λ0| < r
2 ∀m ≥ m0. Hence, for z ∈ B(λ0,

r
2 ),

we have

|λm − z| ≤ |λm − λ0| + |λ0 − z| <
r

2
+

r

2
= r ∀m ≥ m0.

Since d(λm, Aεm) ≥ r, we get z /∈ Aεm ∀m ≥ m0. Hence

γn(a, z) > εm > ε0 − δm ∀m ≥ m0.

Hence γn(a, z) ≥ ε0. Thus we have proved that ‖(λ0 − a)−2n‖ = 1
ε02n and

‖(z − a)−2n‖ ≤ 1
ε02n ∀ z ∈ B(λ0,

r
2 ). By Theorem 2.4, ‖(z − a)−2n‖ = 1

ε02n

∀ z ∈ B(λ0,
r
2 ). Thus B(z0,

r
2 ) ⊆ {z ∈ U : f(z) = ε0}.

2 ⇒ 3. Straightforward.
3 ⇒ 1. Assume that cl{λ ∈ C : γn(a, λ) < ε0} � {λ ∈ C : γn(a, λ) ≤ ε0}.
Then ∃ z0 ∈ C and r > 0 such that γn(a, z0) = ε0 and γn(a, z) ≥ ε0 ∀ z ∈
B(z0, r). Thus ‖(z0 − a)−2n‖ = 1

ε02n and ‖(z − a)−2n‖ ≤ 1
ε02n ∀z ∈ B(z0, r).

By Theorem 2.4, we have ‖(z − a)2
n‖ = 1

ε02n ∀ z ∈ B(z0, r). Hence {z ∈ C :
γn(a, z) = ε0} contains B(z0, r). Consequently, d(z0,Λn,ε(a)) ≥ r ∀ ε < ε0,
which yields left discontinuity at ε0. �

Remark 4.2. Now we would like to point out an error in the proof of 2 ⇒ 3
part of Proposition 4.1 in [17]. The fact that λ0 depends on ε and its value
changes as ε → ε0 was ignored in that proof. This error is fixed in the proof
of above proposition by considering λ0 as a limit point of the sequence {λn}.
This is a more general result as it includes (0, ε)-pseudospectra.
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Remark 4.3. To prove the continuity of the pseudospectrum Λε(a) with re-
spect to a, the authors of [17] used the well known inclusion Λε(a + b) ⊆
Λε+‖b‖(a) ∀ a, b ∈ A. In fact, if ‖b‖ < ε, then using Theorem 3.1(1), it is
possible to prove

Λε−‖b‖(a) ⊆ Λε(a + b) ⊆ Λε+‖b‖(a).

However, the inclusion Λn,ε(a + b) ⊆ Λn,ε+‖b‖(a) need not be true, in gen-
eral. See Example 2.14 in [7] and choose ε = 0.1. In the following lemma,
we propose a possible modification which provides an estimation of (n, ε)-
pseudospectra.

Lemma 4.4. Let A be a Banach algebra, n ≥ 0 and a0 ∈ A. Then for every
η > 0 there exists δ > 0 such that whenever 0 < η ≤ ε and ‖a0 − a‖ < δ, it
follows that

Λn,ε−η(a0) ⊆ Λn,ε(a) ⊆ Λn,ε+η(a0).

Proof. Let η > 0. Since γn is uniformly continuous on E := {(a, z) ∈ A × C :
‖a‖ < ‖a0‖ + 1} by Theorem 3.1(4), there exists 0 < δ < 1 such that for all
z ∈ C

|γn(a0, z) − γn(a, z)| < η if ‖a0 − a‖ < δ.

The required inclusion follows immediately. �

Definition 4.5 (Gn-classes [7]). For n ≥ 1, an element a ∈ A is said to be of
Gn-class if γn−1(a, λ) = d(λ, σ(a)) ∀λ ∈ C.

Remark 4.6. From the above definition, it is clear that a is of Gn-class if
and only if Λn−1,ε(a) = σ(a) + D(0, ε) ∀ ε > 0 and the Gn-classes form
an increasing sequence as n increases, i.e., Gn ⊆ Gn+1 for all n. In [7], an
example is given to show that this inclusion can be proper. Since the normal
elements in a C∗-algebra are of G1-class, the treatment of Gn-classes will
automatically include normal elements.

Remark 4.7. Lemma 4.4 provides us a way to approximate Λn,ε(a). For ex-
ample, if a0 is of Gn+1-class, then it follows that for every η > 0 there exists
δ > 0 such that whenever 0 < η ≤ ε and ‖a0 − a‖ < δ, then

σ(a0) + D(0, ε − η) ⊆ Λn,ε(a) ⊆ σ(a0) + D(0, ε + η).

In particular, it is easy to see that for 1 ≤ p ≤ ∞, a diagonal matrix a0 :=diag
(λ1, . . . , λn), viewed as an operator on X := (Cn, ‖ · ‖p) is of G1-class. Hence
for every η > 0 there exists δ > 0 such that for ε ≥ η and a ∈ B(X), ‖a −
a0‖ < δ, we have

n⋃
i=1

D(λi, ε − η) ⊆ Λn,ε(a) ⊆
n⋃

i=1

D(λi, ε + η).

Now we have developed the necessary tools and are ready to prove our
main result in the following theorem. This extends classical continuity results
known for pseudospectra in the operator context to the generalized setting
of (n, ε)-pseudospectra in the context of Banach algebras.
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Theorem 4.8. Let A be a Banach algebra, n ≥ 0, a0 ∈ A and ε0 ∈ R+. Then
the following statements are equivalent.

1. The map ε �→ Λn,ε(a0) is continuous at ε0.Now we have developed the
necessary tools and are ready to prove our

2. The map a �→ Λn,ε0(a) is continuous at a0.
3. The map (ε, a) �→ Λn,ε(a) is continuous at (ε0, a0) with respect to the

metric in the domain given by

‖(ε1, a1)−(ε2, a2)‖=‖a1−a2‖+|ε1−ε2| ∀ a1, a2 ∈ A and ε1, ε2 ∈ R+,

and the Hausdorff metric in the codomain.
4. The level set {λ ∈ C : γn(a0, λ) = ε0} does not contain any non-empty

open set.
5. cl({λ ∈ C : γn(a0, λ) < ε0}) = {λ ∈ C : γn(a0, λ) ≤ ε0}.

Proof. Equivalence of 1, 4 and 5 follows from Proposition 4.1.
1 ⇒ 3. Let 0 < η < ε0

2 . It follows from Lemma 4.4 that ∃ δ > 0 with
δ < η such that ∀ b ∈ A and ε > 0 with ‖a0 − b‖ + |ε − ε0| < δ, we have

dH(Λn,ε(b),Λn,ε0(a0)) ≤ dH(Λn,ε0−2η(a0),Λn,ε0+2η(a0)) → 0 as η → 0,

because of the hypothesis. Thus the map (ε, a) �→ Λn,ε(a) is jointly continuous
at (ε0, a0).
3 ⇒ 2. Obvious.
2 ⇒ 4. Suppose 4 is false. Then ∃ δ > 0 and z0 ∈ C such that

γn(a0, z) = ε0 ∀ z ∈ B(z0, δ).

Then γn(a0 − z0, z − z0) = ε0 ∀ z ∈ B(z0, δ) (by Proposition 2.5(5) of [7]).
Let b0 = a0 − z0 and w = z − z0. Thus γn(b0, w) = ε0 ∀w ∈ B(0, δ). Now,
let w ∈ B(0, δ

2 ) and k ≥ 2. Then k
k−1 ≤ 2. Hence k

k−1w ∈ B(0, δ). Also, by
Proposition 2.5(6) of [7],

γn

((
1 − 1

k

)
b0, w

)
=

1
1 − 1

k

γn

(
b0,

w

1 − 1
k

)

=
k

k − 1
γn

(
b0,

k

k − 1
w

)

=
k

k − 1
ε0 > ε0.

Hence w /∈ Λn,ε0((1 − 1
k )b0). Thus

B

(
0,

δ

2

)
∩ Λn,ε0

((
1 − 1

k

)
b0

)
= ∅ ∀ k ≥ 2.

Hence

dH

(
Λn,ε0((1 − 1

k
)b0),Λn,ε0(b0)

)
≥ δ

2
∀ k ≥ 2.

Now, again by Proposition 2.5 of [7],

Λn,ε0

((
1 − 1

k

)
b0 + z0

)
= z0 + Λn,ε0((1 − 1

k
)b0).
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Hence Λn,ε0

((
1 − 1

k

)
b0 + z0

) ∩ B(z0,
δ
2 ) = ∅ and B(z0, δ) ⊆ Λn,ε0(a0). Thus

dH

(
Λn,ε0

((
1 − 1

k

)
b0 + z0

)
,Λn,ε0(a0)

)
≥ δ

2
∀ k ≥ 2

and (1 − 1
k )b0 + z0 → a0. This shows that the map a �→ Λn,ε0(a) is discontin-

uous at a0, contradiction. �

Remark 4.9. We now describe some class of elements in some Banach algebras
where one and hence all the the conditions in Theorem 4.8 are fulfilled.

1. Suppose a0 is of Gn+1-class. Then the level set

{z ∈ C : γn(a0, z) = ε0} = {z ∈ C : d(z, σ(a0)) = ε0},

clearly does not contain any non-empty open set.
2. Assume that the resolvent set ρ(a0) of a0 is a connected subset of C. An

obvious modification of the Globvenik’s result ([10]) shows that ‖(λ −
a0)−m‖ can not be constant on an open subset of ρ(a0) for any m ≥ 1.
This recovers the well known fact that if A = B(X) and K ∈ B(X) is
compact, then the (n, ε)-pseudospectrum map is continuous at K.

3. Suppose A = B(X) where either X or its dual X ′ is complex uniformly
convex. Then ‖(λ − a0)−2n‖ can not take constant values on open sets
(see [1] and [20, Theorem 2.6 & Corollary 2.7]).

Example 4.10. Given any integer m ≥ 1, we now construct an example of
a bounded linear operator on a Banach space such that the norm of the
mth power of the resolvent of the operator is constant in an open set in the
resolvent set of the operator. In [19], Seidel suggested this possible modifica-
tion of the fundamental example of Shargorodsky in the following way. Let
X = 	∞(Z) with the norm defined by

‖x‖ =
m−1∑
k=0

|xk| + sup{|xk| : k ∈ Z\{0, ...,m − 1}}. (4.1)

It is easy to see that the above norm is equivalent to the usual sup norm on
X. With this renorming of 	∞(Z), we now construct our desired operator. In
partuicular, we show that there is a bounded linear operator T : X → X and
a δ > 0 such that B(0, δ) ⊆ ρ(T ), and ‖(T −λ)−m‖ is constant on B(0, δ). The
proof is involved and different from the existing classical case [20, Theorem
2.3].

Let M > 4. Define an operator T : X → X by

(Tx)k = αkxk+1, where αk =

{
1
M , k ∈ {0, ...,m − 1}
1, otherwise .

(4.2)

Clearly T is invertible and (T−1x)k = βkxk−1, where

βk =

{
M, k ∈ {1, ...,m}
1, otherwise.
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Note that ‖T‖ = 1 + 1
M and ‖T−1‖ = M . Also it follows that (T−mx)k =

βkβk−1...βk−m+1xk−m, k ∈ Z. It can also be verified that ‖T−m‖ = Mm.
Note that for |z| < 1

M ,

(T − z)−1 = T−1(I − zT−1)−1 = T−1(I + Rz),

where Rz =
∞∑

i=1

ziT−i with

‖Rz‖ ≤ ‖zT−1‖
1 − ‖zT−1‖ ≤ M |z|

1 − M |z| → 0 as|z| → 0.

Again,

(T − z)−m = T−m(I − zT−1)−m = T−m(I + Rz)m = T−m + Δz

where

Δz = T−m

((
m

1

)
Rz +

(
m

2

)
R2

z + ... +
(

m

m

)
Rm

z

)
.

Hence

‖Δz‖ ≤ ‖T−m‖
((

m

1

)
‖Rz‖ +

(
m

2

)
‖Rz‖2 + ... +

(
m

m

)
‖Rz‖m

)
≤ Mm((1 + ‖Rz‖)m − 1).

Note that ‖Δz‖ → 0 as |z| → 0. Again we may observe that with respect to
the standard basis of 	∞(Z), the operator T−m is lower triangular with non-
zero entries (consisting of 1’s and powers of M) only in its (−m)th diagonal
and Rz is lower triangular with zero diagonal. Thus Δz is lower triangular
with zero ith diagonal for i ≥ −m.

[T−m] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0

1 0
M 0

M2 . . .
. . .

Mm

Mm−1

. . .
M

1
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let x ∈ X such that ‖x‖ ≤ 1. Then

‖(T − z)−mx‖ = ‖T−mx + Δzx‖
=

m−1∑
i=0

|(T−mx + Δzx)i| + sup
i�=0,...,m−1

|(T−mx + Δzx)i|. (4.3)
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Thus

‖(T − z)−mx‖

≤
m−1∑
i=0

|(T−mx)i| +
m−1∑
i=0

|(Δz(x − x0e0))i|

+ sup
i�=0,...,m

{(T−mx)m + (Δz(x − x0e0))m, |(T−mx + Δzx)i|}

≤
m−1∑
i=0

M i|xi−m| +
m−1∑
i=0

|(Δz(x − x0e0))i|

+ sup
i�=0,...,m

{Mm|x0| + |(Δz(x − x0e0))m|,Mm−1|xi−m| + |(Δzx)i|}.

Since ‖Δz‖ → 0 as |z| → 0, ∃ 0 < δ < 1
M such that |z| < δ ⇒ ‖Δz‖ < 1

m .
Thus for all |z| < δ, we get

‖(T − z)−mx‖

≤
m−1∑
i=0

M i(‖x‖ − |x0|) + m · 1
m

(‖x‖ − |x0|)

+ sup{Mm|x0| +
1
m

(‖x‖ − |x0|),Mm−1(‖x‖ − |x0|) +
1
m

‖x‖}

≤ sup{(
m−1∑
i=0

M i + 1 +
1
m

)(‖x‖ − |x0|)

+ Mm|x0|, (
m−1∑
i=0

M i + 1 + Mm−1 +
1
m

)(‖x‖ − |x0|) +
1
m

|x0|}

≤ sup{Mm(‖x‖ − |x0|) + Mm|x0|,Mm(‖x‖ − |x0|) + Mm|x0|}
= Mm‖x‖.

Note that in the above computation, we have used the following inequal-
ity for M ≥ 4,

1 + M + ... + Mm−1 ≤ 1
2

(
1
2

)m

Mm +
1
2

(
1
2

)m−1

Mm + ... +
1
2

(
1
2

)1

Mm

<
1
2
Mm.

Take x = e0. Then ‖x‖ = 1 and using 4.3, we have

‖(T − z)−me0‖ = 0 + sup
i�=0,...,m

{Mm · 1, 0 + (Δze0)i} = Mm

for all |z| < δ. Hence ‖(T − z)−m‖ = Mm for all z ∈ B(0, δ).
By taking m = 2n, we see that the level set {λ ∈ C : γn(T, λ) = 1

M }
contains B(0, δ). Hence, by Theorem 4.8, the map S �→ Λn,ε(S), S ∈ B(X),
is discontinuous at S = T . Note that T does not belong to any of the classes
mentioned in Remark 4.9.

We have shown above the existence of a positive δ such that ‖(T −λ)−m‖
is constant in the open disc with the center at 0 and radius δ. Now, we actually



IEOT Continuity of the (n, ε)-Pseudospectrum in Banach Algebras Page 15 of 17 32

estimate a particular value of δ. Observe that ‖Rz‖ ≤ M |z|
1−M |z| → 0 as |z| → 0.

Suppose |z| < δ. Then ‖Rz‖ < Mδ
1−Mδ . Recall that

‖Δz‖ ≤ ‖T−m‖
((

m

1

)
‖Rz‖ +

(
m

2

)
‖Rz‖2 + ... +

(
m

m

)
‖Rz‖m

)
.

Suppose we choose δ > 0 such that Mδ
1−Mδ < 1, that is, δ < 1

2M . Then
‖Rz‖j < ‖Rz‖ < Mδ

1−Mδ ∀j. Hence

‖Δz‖ ≤ Mm‖Rz‖
((

m

1

)
+

(
m

2

)
+ ... +

(
m

m

))

< Mm+12m δ

1 − Mδ
.

In the proof above, we wanted to choose δ > 0 such that ‖Δz‖ < 1
m . This

can be accomplished if δ > 0 is chosen such that

Mm+12m δ

1 − Mδ
<

1
m

, that is, 2mMm+1δ <
1
m

− M

m
δ.

This gives δ < 1
(M+m2mMm+1) < 1

2M . Thus we should take δ < 1
M+m2mMm+1 .

Remark 4.11. In the concluding Remark of [19], the author has commented
that the phenomenon of discontinuity of the (n, ε)-pseudospectra can be con-
trolled by taking large values of n. The following proposition explains the
same idea.

Proposition 4.12. Fix a ∈ A and ε0 > 0. Then the following statements hold.

1. For every η1 > 0 there exists n1 such that dH(Λn,ε(a), σ(a)+D(0, ε)) <
η1 for all n ≥ n1 and all ε ≤ ε0. More precisely, σ(a) + D(0, ε) ⊂
Λn,ε(a) ⊂ σ(a) + D(0, ε + η1).

2. For every η2 > 0 there exists n2 such that dH(Λn,ε1(a),Λn,ε2(a)) <
|ε1 − ε2| + η2 for all n ≥ n2 and all ε1, ε2 ≤ ε0.

3. For every 0 < η3 < ε0 there exists n3 such that for all n ≥ n3 there
is a δ(n) > 0 such that dH(Λn,ε1(a),Λn,ε2(b)) < |ε1 − ε2| + η3 for all
ε1, ε2 ∈ [η3

4 , ε0] and all b ∈ A with ‖a − b‖ < δ(n).

Proof. The proofs of 1 and 2 are easy and 3 follows by Lemma 4.4. �
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