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Abstract
Let A be a complex Banach algebra with unit. For an integer n ≥ 0 and ε > 0, the
(n, ε)-pseudospectrum of a ∈ A is defined by

Λn,ε(A, a) :=
{
λ ∈ C : (λ − a) is not invertible in A or ‖(λ − a)−2n‖1/2n ≥ 1

ε

}
.

Let p ∈ A be a nontrivial idempotent. Then pAp = {pbp : b ∈ A} is a Banach
subalgebra of A with unit p, known as a reduced Banach algebra. Suppose ap =
pa. We study the relationship of Λn,ε(A, a) and Λn,ε(pAp, pa). We extend this by
considering first a finite family, and then an at most countable family of idempotents
satisfying some conditions. We establish that under suitable assumptions, the (n, ε)-
pseudospectrum of a can be decomposed into the union of the (n, ε)-pseudospectra
of some elements in reduced Banach algebras.
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1 Introduction

It is known that the spectrum of the direct sum of a finite number of operators on the
direct sum of Hilbert spaces is the union of their spectra (Problem 98 of [9]). The
situation is slightly different if one considers an infinite direct sum of operators, and
this has been studied in [4]. These operators arising naturally in the study of quantum
mechanics and quantum field theory have been investigated by many researchers in
the literature (see [8,15]).

Further, one can ask similar questions replacing spectrum by another subset of
the complex plane, namely the (n, ε)-pseudospectrum. The (n, ε)-pseudospectrum of
a linear operator on a Hilbert space was first introduced and studied by Hansen in
[10–12] and subsequently was further explored for Banach space operators by Seidel
[20] and to the elements of a Banach algebra in [6,13]. The advantages of studying
these sets are that in contrast to spectra, the (n, ε)-pseudospectra are less sensitive in
perturbations and approximate spectra for arbitrarily large n (see [11,12]).

The present note aims to show that the (n, ε)-pseudospectrum of an element of a
Banach algebra can be decomposed into a union of the (n, ε)-pseudospectra of some
elements of certain reduced Banach subalgebras. These subalgebras are expected to
be finite dimensional and hence the computation of these sets is expected to be easier.

Throughout, by a Banach algebra A, we always mean a complex Banach algebra
with unit 1 and ‖1‖ = 1. Let p ∈ A be an idempotent, that is, p2 = p. We always
assume that p is non-trivial, that is, p �= 0 and p �= 1. Then pAp = {pap : a ∈ A} is
a subalgebra of A with unit p. Now, if pan p converges to x ∈ A, then by continuity,
pan p also converges to pxp and hence x = pxp ∈ pAp. Thus pAp is a Banach
algebra, known as a reduced Banach algebra. We study the relationship between the
(n, ε)-pseudospectrum of a ∈ A and the (n, ε)-pseudospectrum of pap ∈ pAp. The
usual pseudospectra case (i.e., n = 0) has been dealt with in details in [16,18].

In large parts of this paper, we concentrate on the particular case with pi being
idempotents with

∑
pi = 1, often under additional condition ‖pi‖ = 1. Further, a is

assumed to commute with all pi , which figuratively speaking means, that pi somehow
decompose A into a kind of “orthogonal” sum, and further a is “diagonal” with respect
to this decomposition. A good example of this situation is provided by block diagonal
operators.

We organize the paper as follows. In Sect. 2, we review basic definitions and intro-
duce some notation used in this paper. In Sect. 3, we consider a ∈ A and a finite family
of idempotents p1, . . . , pl in A satisfying api = pia for each i and

∑l
i=1 pi = 1,

and answer the following question: when can one write

Λn,ε(A, a) =
l⋃

i=1

Λn,ε(pi Api , pia)∀ ε > 0? (1)

We show that the equality in (1) occurs when A has the following property:

If y ∈ A such that ypi = pi y ∀ i, then ‖y‖ = max
1≤i≤l

‖pi y‖.
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The last equality always occurs when A is a C∗-algebra and the idempotents are
self adjoint (see Proposition 2). Further, we show that if a is of Gn+1-class (see
Definition 6) such as self-adjoint and normal elements in a C∗-algebra, then (1) is
satisfied (see Proposition 3). In Sect. 4, we consider at most countable family of
idempotents {p j : j ∈ I } and study the invertibility of a by studying the invertibility
of the elements p ja in p j Ap j , j ∈ I under suitable assumptions. Subsequently, we
investigate the behaviour of the spectrum of a and the (n, ε)-pseudospectrum of a in
terms of their reduced components (see Theorem 4).

2 Background and notation

In this section, we recall some basic definitions and results. Let A be a Banach algebra
and a ∈ A. We identify the scalar λ ∈ C with λ1 ∈ A. B(X) denotes the Banach
algebra of all bounded linear operators on a Banach space X with the operator norm.

Definition 1 The spectrum of a is defined by

σ(A, a) := {λ ∈ A : λ − a is not invertible in A}, and

the spectral radius of a is defined by

r(A, a) := max{|λ| : λ ∈ σ(A, a)}.

Definition 2 The numerical range of a (see [1]) is defined by

V (a) := {g(a) : g ∈ A′, ‖g‖ = 1 = g(1)},

where A′ is the dual of A. An element a is Hermitian if its numerical range V (a) is
contained in the real line.

Definition 3 For ε > 0, the ε-pseudospectrum of a is defined by

Λε(A, a) = σ(A, a) ∪
{
λ /∈ σ(A, a) : ‖(λ − a)−1‖ ≥ 1

ε

}
.

For a detailed treatment of the ε-pseudospectrum, one may refer to [17], the compre-
hensive monograph by Trefethen and Embree [22] and the references therein. Also,
we refer to [2,3,14,21] for more information.

Definition 4 For an integer n ≥ 0, define the function γn(A, ., .) : A × C → [0,∞)

by

γn(A, b, λ) =
{

‖(λ − b)−2n‖−1/2n , if λ − b is invertible

0, otherwise.
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It is known that the functions γn are continuous for all n ≥ 0, uniformly continuous
on bounded sets for n ≥ 1 and Lipschitz on some “particular” domains in A × C for
n ≥ 1 (see [7, Theorem 3.1]).

Definition 5 For an integer n ≥ 0 and ε > 0, the (n, ε)-pseudospectrum of a is defined
by (see [10])

Λn,ε(A, a) := {λ ∈ C : γn(A, a, λ) ≤ ε}.

Remark 1 The notion of the (n, ε)-pseudospectrum is an extension of the theory of
ε-pseudospectrum. It is known that the (n, ε)-pseudospectrum of a is a non-empty
compact subset of the complex plane and it approximates the closed ε-neighbourhood
of the spectrum of a as n tends to infinity (see [11,20] and [6, Theorem 2.8]).

3 Finite number of idempotents

In this section, we consider a finite number of idempotents p1, . . . , pl satisfy-
ing certain conditions and study the relationship between Λn,ε(A, a) and the sets
Λn,ε(pi Api , pia) for i = 1, . . . , l. We begin with a well-known lemma (see [9,17]).
The proof is included for the sake of completeness.

Lemma 1 Let A be a Banach algebra.

1. Let p be an idempotent in A and a ∈ A such that ap = pa. Then σ(pAp, pa) ⊆
σ(A, a).

2. Let p1, . . . , pl be idempotents in A such that
∑l

i=1 pi = 1. Suppose a ∈ A is
such that api = pia for each i . Then

σ(A, a) =
l⋃

i=1

σ(pi Api , pia).

Hence r(A, a) = max
1≤i≤l

r(pi Api , pia).

Proof 1. If λ /∈ σ(A, a), then there exists b ∈ A such that (λ− a)b = b(λ− a) = 1.
So (λp − ap)b = p = b(λp − ap) and hence λ /∈ σ(pAp, pa).

2. The inclusion
l⋃

i=1
σ(pi Api , pia) ⊆ σ(A, a) follows from 1. For the reverse inclu-

sion, let λ /∈ σ(pi Api , pia) for all i ∈ {1, . . . , l}. Then for each i , there is bi ∈ A
such that

(λpi − pia)pibi pi = pibi pi (λpi − pia) = pi .

Then we have

(λ − a)

(
l∑

i=1

pibi pi

)
=

(
l∑

i=1

pibi pi

)
(λ − a) =

l∑
i=1

pi = 1.

Hence λ /∈ σ(A, a). ��
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Lemma 2 Let A be a Banach algebra, p ∈ A be an idempotent, n ≥ 0 and m = 2n.
Let a ∈ A be such that ap = pa. Then

γn(A, a, z) ≤ ‖p‖1/mγn(pAp, pa, z) ∀ z ∈ C , and consequently

Λn,ε(pAp, pa) ⊆ Λn,‖p‖1/mε(A, a)∀ ε > 0.

Proof First note that if a is invertible in A, then pa−1 = a−1 p is the inverse of pa in
pAp. Suppose z /∈ σ(A, a). Then p(z−a)−m is the inverse of p(z−a)m = (p(z−a))m

in pAp. Also ‖p(z − a)−m‖ ≤ ‖p‖‖(z − a)−m‖. Thus

γn(A, a, z) = ‖(z − a)−m‖−1/m

≤ ‖p‖1/m‖p(z − a)−m‖−1/m

= ‖p‖1/mγn(pAp, pa, z).

If (z − a) is not invertible in A, then γn(A, a, z) = 0 and hence the above inequality
holds trivially. ��

Proposition 1 Let A be a Banach algebra, n ≥ 0, m = 2n and ε > 0. Let p1, . . . , pl
be idempotents in A such that

∑l
i=1 pi = 1. Further, let a ∈ A such that api = pia

for all i ∈ {1, . . . , l} and K := max
i=1,...,l

‖pi‖1/m. Then for all z ∈ C

γn(A, a, z) ≤ K min
1≤i≤l

γn(piapi , pia, z) and

min
1≤i≤l

γn(piapi , pia, z) ≤ l1/mγn(A, a, z). (2)

Consequently,

Λn,εl−1/m (A, a) ⊆
l⋃

i=1

Λn,ε(pi Api , pia) ⊆ Λn,K ε(A, a).

Proof The first of (2) follows directly from Lemma 2. For the second part, first assume
that (z − a)m pi is invertible in pi Api with inverse pibi pi for all i , then (z − a)m is
invertible and (z − a)−m = ∑l

i=1 pibi pi . Thus

‖(z − a)−m‖ = ‖
l∑

i=1

pibi pi‖ ≤ l max
1≤i≤l

‖pibi pi‖.

Hence

‖(z − a)−m‖−1/m ≥ l−1/m min
1≤i≤l

‖pibi p j‖−1/m .
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This yields

min
1≤i≤l

γn(pi Api , pia, z) ≤ l1/mγn(A, a, z). (3)

Now, if (z − a)pi0 is not invertible in pi0 Api0 for some i0, then

γn(pi0 Api0 , pi0a, z) = 0 = min
1≤i≤l

γn(pi Api , pia, z).

Hence the second part (2) holds for all z ∈ C. Thus

λ ∈ Λn,εl−1/m (A, a) ⇐⇒ γn(A, a, λ) ≤ εl−1/m ⇒ min
1≤i≤l

γn(pi Api , pia, λ) ≤ ε.

Consequently λ ∈ Λn,ε(pi0 Api0 , pi0a) for some io. Thus Λn,εl−1/m (A, a) ⊆⋃l
i=1 Λn,ε(pi Api , pia). Hence the required results follow. ��

Remark 2 With the assumption that ‖pi‖ = 1, for each i , in general, the inclusion⋃l
i=1 Λn,ε(pi Api , pia) ⊆ Λn,K ε(A, a) can be proper. See [17, Example 3.9] for

l = 2 and n = 0.

So when can we write Λn,ε(A, a) = ⋃l
i=1 Λn,ε(pi Api , pia)∀ε > 0 ? In the

following theorem, we give a sufficient condition under which the above equality
occurs.

Theorem 1 Let A be a Banach algebra. Let p1, . . . , pl be idempotents in A such that∑l
i=1 pi = 1. Suppose a ∈ A such that api = pia for each i . Further, assume that A

has the following property:

if y ∈ A such that ypi = pi y ∀ i, then ‖y‖ = max
1≤i≤l

‖pi y‖. (4)

Then for n ≥ 0,

γn(A, a, λ) = min
1≤i≤l

γn(pi Api , pia, λ)∀λ ∈ C. (5)

Consequently,

l⋃
i=1

Λn,ε(pi Api , pia) = Λn,ε(A, a)∀ε > 0.

Proof Let m = 2n . If λ ∈ σ(A, a), then (5) follows from Lemma 1(2). Let λ /∈ σ(a)

and let x = (λ − a)m . For each i ∈ {1, . . . , l}, xpi = pi x and pi x−1 = x−1 pi . Then
the hypothesis says that ‖x−1‖ = max

1≤i≤l
‖pi x−1‖. Hence

‖(λ − a)−m‖ = max
1≤i≤l

‖pi (λ − a)−m‖.
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This yields (5). ��
The next proposition presents a sufficient condition for which the condition (4)

holds.

Proposition 2 Let A be a C∗-algebra. Let p1, . . . , pl be self adjoint idempotents in A
such that

∑l
i=1 pi = 1. Then the condition (4) holds.

Proof Let a ∈ A such that api = pia ∀ i . Then

‖a‖2 = ‖a∗a‖ = r(A, a∗a)

= max
1≤ j≤l

r(p j Ap j , p j (a
∗a)) (using Lemma 1)

= max
1≤ j≤l

r(p j Ap j , (p ja)∗(p ja))

= max
1≤ j≤l

‖(p ja)∗(p ja)‖ (since p j Ap j is a C
∗-algebra)

= max
1≤ j≤l

‖p ja‖2.

This immediately gives the required result. ��
Definition 6 (Gn-classes [6]) Suppose A is a Banach algebra. For n ≥ 1, an element
a ∈ A is said to be of Gn-class if γn−1(A, a, z) = d(z, σ (A, a)) ∀z ∈ C.

Remark 3 Note that a is of Gn-class if and only if Λn−1,ε(A, a) = σ(A, a)+ D(0, ε)
∀ ε > 0. Further, Gn ⊆ Gn+1 ∀n. It is known that the normal operators on a Hilbert
space are of G1-class (see [19]). In [6], an example of a bounded linear operator on
�2(Z) is given to show the existence of non-normal elements in Gn-classes for some
n > 1.

Proposition 3 Let A be a Banach algebra and ε > 0. Let p1, . . . , pl be idempotents
in A such that

∑l
i=1 pi = 1. Let a ∈ A be such that api = pia and ‖pi‖ = 1∀ i ∈

{1, . . . , l}. Further assume that a is of Gn+1-class for some n. Then

l⋃
i=1

Λn,ε(pi Api , pia) = Λn,ε(A, a).

Proof Letλ ∈ C. Sincea is ofGn+1-class, γn(A, a, λ) = d(λ, σ (A, a)). ByLemma1,
it follows that

d(λ, σ (A, a)) = d(λ,

l⋃
i=1

σ(pi Api , pia))

= min
1≤i≤l

d(λ, σ (pi Api , pia))

The required result is immediate by Proposition 2.5(3) of [6] and Proposition 1
with K = 1. ��
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The following proposition is a generalization of a result on usual pseudospectra.
See [16, Theorem 3.18].

Theorem 2 Let A be a Banach algebra and p1, p2, . . . , pl be idempotents in A such
that p j pk = 0 if j �= k. Suppose there exists a function g : Rl+ → R such that

‖x‖ = g(‖p1x‖, . . . , ‖pl x‖) ∀ x ∈ A satisfying xpi = pi x ∀ i .

Then the following statements hold.

1. ‖x‖ = max
1≤i≤l

‖pi x‖ ∀ x ∈ A satisfying xpi = pi x ∀i .
2. ‖p j‖ = 1 ∀ j .
3. For each j , p j is Hermitian.
4.

∑l
i=1 pi = 1.

5. Further, if api = pia for all i , then

Λn,ε(A, a) =
l⋃

i=1

Λn,ε(pi Api , pia).

Proof 1. It is proved in [16, Theorem 3.18] that the above hypotheses imply that

‖x‖ = max
1≤i≤l

‖pi x‖ ∀ x ∈ A satisfying xpi = pi x ∀i .

2. Follows by taking x = 1 in statement 1.
3. Let j ∈ {1, . . . , l}. In view of [1, Corollary 1.10.13], it is enough to show that

‖eitp j ‖ = 1 ∀t ∈ R.

Let x = eitp j = ∑∞
k=0

(i tp j )
k

k! . Then xp j = p j + i tp j + (i tp j )
2

2 + · · · = eit p j =
p j x . Then ‖p j x‖ = |eit |‖p j‖ = 1. For k �= j , pkx = pk = xpk since pk p j = 0.
Hence ‖pkx‖ = ‖pk‖ = 1 ∀ k �= j , and so ‖x‖ = 1 by 1.

4. Let x = 1 − (p1 + · · · + pl). Then p j x = 0 ∀ j . Applying 1, we get x = 0.
5. Finally, we see that all the hypotheses of Theorem 1 are satisfied and hence 5

follows.
��

4 At most countable family of idempotents

In this section, we turn our attention to a family of idempotents {p j : j ∈ I }, where I
is an at most countable set. Note that the sum

∑
j∈I p j does not converge in the norm

topology. So we may need additional hypotheses to obtain the earlier results.

Theorem 3 Let A be a Banach algebra and I be an at most countable set. Let {p j :
j ∈ I } be a family of idempotents in A satisfying pi p j = 0 for i �= j , and
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‖x‖ = sup
j∈I

‖p j x‖ for all x ∈ A such that p j x = xp j ∀ j ∈ I . (6)

Then the following statements hold.

1. ‖p j‖ = 1 for all j .
2. p j is Hermitian for each j .
3. If I is a finite set, say I = {1, . . . , l}, then 1 = p1 + · · · + pl .
4. Suppose a ∈ A is invertible with inverse a−1 and ap j = p ja ∀ j ∈ I . Then

a−1 p j = p ja−1, p j a−1 is the inverse of p jap j in p j Ap j for each j and ‖a−1‖ =
sup
j∈I

‖p ja−1‖.
5.

⋃
j∈I

σ(p j Ap j , p ja) ⊆ σ(A, a).

Proof 1, 2 and 3 follow in a similar way as in Theorem 2. To see 4, note that
a−1ap ja−1 = a−1 p jaa−1 and hence p ja−1 = a−1 p j ∀ j ∈ I . Thus by (6),
it follows that ‖a−1‖ = sup

j∈I
‖p ja−1‖. Also, p ja−1 = p ja−1 p j ∈ p j Ap j and

p jap j p ja−1 = p j . Similarly, p ja−1 p jap j = p j . Hence p ja−1 is the inverse of
p jap j in p j Ap j . The last assertion is immediate. ��

In the following theorem, we give a sufficient condition for the invertibility of an
element a ∈ A in terms of the invertibility of the elements piapi ∈ pi Api and we
discuss its impact on the computation of the spectra and the (n, ε)-pseudospectra.

Theorem 4 Let A be a Banach algebra. Suppose {p j : j ∈ I } is an at most family of
idempotents in A satisfying (6) and further the family has the following property:

(
a ∈ A, p ja = ap j ∀ j ∈ I , p ja is invertible in p j Ap j with inverse p jb j p j for each

j ∈ I and sup
j∈I

‖p jb j p j‖ < ∞
)

⇒ a is invertible in A and ‖a−1‖ = sup
j∈I

‖p jb j p j‖.
(7)

Let a ∈ A such that ap j = p ja ∀ j ∈ I . Then the following statements hold.

1.

σ(A, a) =
⋃
j∈I

σ(p j Ap j , p ja)

∪ {λ ∈ C \
⋃
j∈I

σ(p j Ap j , p ja) : sup
j∈I

‖p j c j p j‖ = ∞}, (8)

where p j c j p j is the inverse of p j (λ − a) in p j Ap j .
2. For a non negative integer n and z ∈ C,

γn(A, a, z) = inf
j∈I γn(p j Ap j , p ja, z).
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3. For ε > 0,

Λn,ε(A, a) =
⋃
j∈I

Λn,ε(p j Ap j , p ja) ∪ {λ ∈ C : inf
j∈I γn(p j Ap j , p ja, λ) = ε}.

Proof 1. By Theorem 3(4),
⋃
j∈I

σ(p j Ap j , p ja) ⊆ σ(A, a). Let λ /∈ σ(A, a). Replac-

ing a by (λ − a) in Theorem 3(4), we have one side of the inclusion in (8). The
other side of the inclusion follows from (7).

2. Suppose z /∈ σ(A, a). Then

‖(z − a)−2n‖ = sup
j∈I

‖p j (z − a)−2n‖ (by hypothesis),

and hence γn(A, a, z) = inf
j∈I γn(p j Ap j , p ja, λ).

Next suppose z ∈ σ(A, a). Then γn(A, a, z) = 0 and (z − a)m is not invertible in
A. Thus, either pk(z−a)m is not invertible in pk Apk for some k ∈ I , or, p j (λ−a)m

is invertible in p j Ap j with inverses p j c j p j∀ j ∈ I , but sup
j∈I

‖p j c j p j‖ = ∞, using

(7). In either case, we have inf
j∈I γn(p j Ap j , p ja, z) = 0.

3. Observe that

λ ∈ Λn,ε(A, a)

⇐⇒ γn(A, a, λ) ≤ ε

⇐⇒ inf
j∈I γn(p j Ap j , p ja, z) ≤ ε

⇐⇒ ∃ k ∈ I such that γn(pk Apk, pka, z) ≤ ε or, inf
j∈I γn(p j Ap j , p ja, z) = ε

⇐⇒ λ ∈ Λn,ε(pk Apk, pka) or, inf
j∈I γn(p j Ap j , p ja, z) = ε.

��
Remark 4 Note that if I is a finite set, then the second set on the right hand side of (8)
will be empty and (8) will coincide with the results given in Lemma 1(2).

Now we provide an example where the conditions in the hypotheses of the Theo-
rem 4 are satisfied and consequently the results of Theorem 4 hold.

Example 1 Let (X j , ‖ · ‖ j ) be an at most family of Banach spaces. For 1 ≤ r < ∞,
let

Xr := {x = {x j } : x j ∈ X j with
∑
j∈I

‖x j‖rj < ∞}, and

X∞ := {x = {x j } : x j ∈ X j with sup
j∈I

‖x j‖ j < ∞}.
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The co-ordinatewise linear operations make Xr and X∞ vector spaces. If x = {x j },
then define the norms by

‖x‖r =
⎛
⎝∑

j∈I
‖x j‖rj

⎞
⎠

1
r

, 1 ≤ r < ∞, and ‖x‖∞ = sup
j∈I

‖x j‖ j .

Then for 1 ≤ r ≤ ∞, (Xr , ‖ · ‖r ) becomes a Banach space, known as the direct sum
of Banach spaces (see [5]). Let 1 ≤ r < ∞. For each j ∈ I , define Pj : Xr → Xr by

Pj (x1, x2, . . . , x j , x j+1, . . .) = (0, . . . , x j , 0, . . .)

Then P2
j = Pj and ‖Pj‖ = 1 for all j ∈ I and for x = {x j } ∈ Xr ,

‖Pj x‖r = ‖x j‖ j , and hence ‖x‖rr =
⎛
⎝∑

j∈I
‖Pj (x)‖rr

⎞
⎠ .

In this case we have x = ∑
j∈I

Pj (x) ∀ x ∈ Xr . Let T ∈ B(Xr ) with T Pj = Pj T

∀ j ∈ I . Suppose α = sup
j∈I

‖Pj T ‖. Clearly, α ≤ ‖T ‖. Further, for x ∈ Xr ,

‖T x‖rr =
∑
j∈I

‖Pj T (x)‖rr

=
∑
j∈I

‖T Pj Pj (x)‖rr

≤
∑
j∈I

(‖T Pj‖‖Pj (x)‖r
)

≤ αr
∑
j∈I

(‖Pj (x)‖rr )

= αr‖x‖rr .

Thus ‖T x‖r ≤ α‖x‖r ∀ x ∈ Xr . Hence ‖T ‖ = α = sup
j∈I

‖Pj T ‖ and consequently (6)

is satisfied.
Note that Pj B(Xr )Pj = B(Pj (Xr )). Now let Tj = Pj T |Pj (Xr ) ∀ j ∈ I . Then

Tj ∈ B(Pj (Xr ))∀ j ∈ I . Suppose each Tj is invertiblewith inverse S j and sup
j∈I

‖S j‖ =
β (say) < ∞. Then we show that T is invertible in B(Xr ) and ‖T−1‖ = β.

Now, for any y ∈ Xr , we observe that

∑
j∈I

‖S j Pj (y)‖rj ≤ β
∑
j∈I

‖Pj (y)‖rj = β‖y‖rr < ∞.
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Thus we can define the operator S, which is the direct sum of the operators S j , i.e.,
S(y) = ∑

j∈I
S j Pj (y) ∀y ∈ Xr . The sum is understood pointwise in the sense of strong

convergence. Note that ‖S(y)‖rr ≤ β‖y‖rr and hence S ∈ B(Xr ).
We show that ‖S‖ = β. To see this, let ε > 0. There exists k ∈ I and x0 ∈ Pk(Xr )

with ‖x0‖ = 1 such that β − ε < ‖Sk(x0)‖k . Now, since x0 = pk(x0), we get

‖S(x0)‖rr =
∑
j∈I

‖S j Pj (x0)‖rj = ‖Sk(x0)‖rk > (β − ε)r .

This holds for every ε > 0. Thus it follows that ‖S‖ = β.
NowRange(S j ) = Pj (Xr ) and Pj Pk = 0 ∀k �= j . Hence Pk S = Sk Pk ∀ k. Further

ST (x) =
∑
j∈I

S j Pj (T x) =
∑
j∈I

S j Pj T Pj (x) =
∑
j∈I

S j Tj Pj (x)

=
∑
j∈I

Pj (x) = x ∀ x ∈ Xr .

Again, for x ∈ Xr , we have

T S(x) =
∑
j∈I

T S j Pj (x) =
∑
j∈I

T Pj S j Pj (x)

=
∑
j∈I

Tj S j Pj (x)

=
∑
j∈I

Pj (x)

= x .

Consequently, T is invertible, T−1 = S and ‖T−1‖ = ‖S‖ = sup
j∈I

‖S j‖. Note that T
can be expressed as a direct sum of the operators Tj , j ∈ I . Now the hypotheses of
Theorem 4 are satisfied. Hence

σ(B(Xr ), T ) =
⋃
j∈I

σ(B(Pj (X
r )), Tj ) ∪ {λ ∈ C : sup

j∈I
‖Pj K j Pj‖ = ∞},

where Pj K j Pj is the inverse of Pj (λ − T ) |Pj (Xr ) for each j ∈ I , and

Λn,ε(B(Xr ), T )

=
⋃
j∈I

Λn,ε(B(Pj (X
r ), Tj ) ∪

{
λ ∈ C : inf

j∈I γn(B(Pj (X
r )), Tj , λ) = ε

}
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