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Abstract: Hybrid lead halide perovskites (LHPs) have been emerged as an efficient material for 

superior solar energy conversion during the last decade, due to their following unique properties: 

large absorption coefficient in the visible, low charge carrier (electron/hole) recombination rates, 

and sufficiently long carrier diffusion length.1-3 Understanding fundamental photophysics behind 

such high power conversion efficiency requires a thorough understanding of the following 

phenomena: dissociation excitons to free carriers, hot carriers cooling, and recombination 

dynamics. We use sub-10 femtosecond pump-probe spectroscopy to uncover early stages of 

carrier evolution in methylammonium lead iodide (MAPbI3) perovskite thin films.4,5 Results 

show that photoexcitation with laser pulses centered ~530 nm (~0.7 eV excess to that of the band 

gap of MAPbI3) generates localized exciton (e-h pair), which subsequently dissociate to free 

carriers within first 20 fs. In later stages, these hot free carriers cool to the band edge by emitting 

optic phonons, with a time constant ~0.4 ps. Using a very high signal-to-noise ratio (S/N), we are 

able to detect faint periodic spectral modulation in the transient signals due to electron-phonon 

coupling in the material. The Fourier transform of the periodic modulation results in mainly two 

frequencies: ~100 and ~240 cm-1 assigned to the stretching of Pb-I bonds in the inorganic cage 

and torsions of CH3NH3
+ cation, respectively. The amplitude of the spectral modulations has 

been used to estimate the electron-phonon coupling strength. The estimated coupling strength 

falls in the weak regime and hence suggest the formation of large polarons. 
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