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Abstract

Edge-intersection graphs of paths on a grid (or EPG graphs) are graphs
whose vertices can be represented as simple paths on a rectangular grid such
that two vertices are adjacent in the graph if and only if the corresponding
paths share at least one edge of the grid. For two boundary points p and
q on two adjacent boundaries of a rectangular grid G, we call the unique
single-bend path connecting p and q in G using no other boundary point of
G as the path generated by (p, q). A path in G is called boundary-generated,
if it is generated by some pair of points on two adjacent boundaries of G.
In this article, we study the edge-intersection graphs of boundary-generated
paths on a grid or ∂EPG graphs. The motivation for studying these graphs
comes from problems in the context of circuit layout.

We show that ∂EPG graphs can be covered by two collections of vertex-
disjoint co-bipartite chain graphs. This leads us to a linear-time testable
characterization of ∂EPG trees and also an almost tight upper bound on
the equivalence covering number of general ∂EPG graphs. We also study
the cases of two-sided ∂EPG and three-sided ∂EPG graphs, which are re-
spectively, the subclasses of ∂EPG graphs obtained when all the boundary-
vertex pairs which generate the paths are restricted to lie on at most two
or three boundaries of the grid. For the former case, we give a complete
characterization.

1 Introduction
Edge intersection graphs of paths on a grid (or for short EPG graphs) were first
introduced by Golumbic, Lipshteyn and Stern in [13]. This is the class of graphs
whose vertices can be represented as simple paths on a rectangular grid so that
two vertices are adjacent if and only if the corresponding paths share at least one
edge of the grid.

EPG graphs have a practical use, e.g., in the context of circuit layout setting,
which may be modeled as paths (wires) on a grid. In the knock-knee layout model,
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two wires may either cross or bend (turn) at a common grid point, but are not
allowed to share a grid-edge; that is, overlap of wires is not allowed.

1.1 Bk-EPG graphs

In [13], the authors show that every graph is an EPG graph. That is, for every
graph G = (V,E) there exists an EPG representation 〈G,P〉 where P = {Pv :
v ∈ V } is a collection of paths on a grid G, corresponding to the vertices of V
and satisfying: paths Pv, Pu ∈ P share a grid-edge of G if and only if (v, u) ∈ E.
Moreover, they show that if G has n vertices and m edges, then there exists
an EPG representation 〈G,P〉 of G in which G is a grid of size n× (n+m) and the
paths in P are monotonic. As such, much of the current research today focuses on
subclasses of EPG graphs, and, in particular, limiting the type of paths allowed.

A turn of a path at a grid point is called a bend and a graph is called a k-bend
EPG graph (denoted Bk-EPG) if it has an EPG representation in which each path
has at most k bends. It is both interesting mathematically, and justified by the
circuit layout application described above, to consider subclasses of graphs, e.g.,
by bounding the number of bends allowed in each path.

In [4], the authors show that for any k, only a small fraction of all labeled
graphs on n vertices are Bk-EPG, and that for any fixed degree d ≥ 4, a grid size
of Θ(n2) is needed to give an EPG representation of every graph with n vertices
and maximum degree d, for sufficiently large n. For example, a representation
of the complete bipartite graph Kn/2,n/2 needs at least n2/4 grid-edges, and [13]
showed that 3n2 grid-edges is sufficient to represent any graph.

The class of B0-EPG graphs is easily seen to be equivalent to the well known
family of interval graphs (see [11]). B1-EPG graphs are the single bend EPG
graphs, studied further in [3, 6, 8, 13, 14]. Improving a result of [5], it was shown
in [17] that every planar graph is a B4-EPG graph. It is still open whether k = 4
is best possible. So far it is only known that there are planar graphs that are
B3-EPG graphs and not B2-EPG graphs. Some subclasses of planar graphs have
showen to be B2-EPG graphs, e.g., Halin graphs [10] and outerplanar graphs [17]
(thus proving a conjecture of [5]). Also, [1] have shown that circular-arc graphs
are B3-EPG graphs, and that this is best possible.

For the case of B1-EPG graphs, Golumbic, Lipshteyn and Stern [13] showed
that every tree is a B1-EPG graph, and in [14] they showed that single bend paths
on a grid have strong Helly number 4. Asinowski and Ries [3] proved that every
B1-EPG graph on n vertices contains either a clique or a stable set of size at least
n1/3. In [3], the authors also give a characterization of the B1-EPG graphs among
some subclasses of chordal graphs, namely, chordal bull-free graphs, chordal claw-
free graphs, chordal diamond-free graphs, and special cases of split graphs. In [8],
a characterization of the sub-family of cographs that are B1-EPG graphs is given
by a complete family of minimal forbidden induced subgraphs.

No characterization is known for Bk-EPG graphs (for any k ≥ 1 ) and the
recognition problems are NP-complete for k = 1 [16] and k = 2 [22]. For k = 1,
the recognition problem remains NP-complete even if just one of the four single
bend shapes is allowed, the so called L-shaped B1-EPG graphs [6].
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1.2 Boundary generated EPG graphs

In this paper, we consider a further restriction on B1-EPG graphs, namely that,
the endpoints of every path lie on the boundary of the host rectangular grid; see
Figure 1 for an illustration. This restriction is motivated by applications in circuit
design, where it is easier to take out connections from the edge of the chip or
board. This notion was first proposed for investigation in [12]. Formally,

Definition 1.1. For two boundary points p and q on two adjacent boundaries
of a rectangular grid G, we call the unique single-bend path connecting p and q
in G using no other boundary point of G the path generated by (p, q). A path
in G is called boundary-generated, if it is generated by two points on adjacent
boundaries of G. A graph G is called an edge-intersection graph of boundary-
generated paths in a grid, ∂EPG graphs for short, if there exists a rectangular
grid G and a representation ψ which assigns to every vertex in G, a boundary-
generated path in G such that two vertices u, v ∈ V (G) are adjacent in G, if and
only if the corresponding paths ψ(u) and ψ(v) share a common grid-edge of G.
In this case, we call 〈G,P〉 a ∂EPG representation of G, where P is the multiset
{ψ(v) : v ∈ V (G)}.

Figure 1: A 4-side boundary generated representation for K2,4.

2 Preliminaries
All graphs considered are finite and undirected. The complement of a graph G is
denoted by G. Two adjacent (non-adjacent) vertices with the same neighborhood
are called true twins (false twins). The reduced graph of a graph G is the graph
obtained from G by deleting all but one vertex from each set of false twins. The
line graph L(G) of a graph G is the intersection graph of the edge-set of G.

An equivalence graph is a vertex disjoint union of cliques, or equivalently, the
graph where the adjacency relation is an equivalence relation. The equivalence
covering number eq(G) of a graph G is the minimum number of equivalence graphs
whose union is G [2]. For triangle-free graphs, equivalence covering number is the
same as edge-chromatic number.

The product dimension or Prague dimension of a graph is a parameter which
is closely related to the equivalence covering number. A product k-encoding of
a graph G is obtained by associating to each vertex v a unique vector f(v) =
(v1, . . . , vk) over the natural numbers so that for xy ∈ E(G) the vectors f(x) and
f(y) differ in all coordinates and for xy /∈ E(G) the vectors f(x) and f(y) agree
in at least one coordinate. The product dimension or Prague dimension of a graph
G, pdim(G), is the smallest number k such that G has a product k-encoding. It
is an easy observation (cf. [21]) that

eq(G) ≤ pdim(G) ≤ eq(G) + 1.
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The difference of 1 occurs because a product k-encoding needs to associate a unique
vector to each vertex. For instance, the product dimension of the empty graph G
on two vertices is 2 whereas G can be covered by one clique. But if G has no true
twins (i.e., G has no false twins), then eq(G) = pdim(G).

The equivalence covering number was first studied by Duchet in 1979 [9]. The
concept of product dimension of a graph was first used by Nešetřil and Rödl to
prove the Galvin-Ramsey property of the class of all finite graphs [21]. Lovász,
Nešetřil and Pultr [19] and Alon [2] describe a structure in a graph that forces
its product dimension (equivalence covering number) to be high. Both the proofs
employ exterior algebra techniques. We use the same structure to show the ex-
istence of ∂EPG graphs with arbitrarily large equivalence covering number. It is
established in [16] that the bend number of a graph G, which is the smallest k for
which G is Bk-EPG, is at most eq(G)− 1. (There, equivalence number of a graph
is referred to as its global clique covering number).

A bipartite graph is called a chain graph if, for each color class, the neighbor-
hoods of the vertices in that color class can be linearly ordered with respect to
inclusion. Equivalently, it is a bipartite graph which is 2K2-free. A co-bipartite
chain graph is the complement of a bipartite chain graph. Note that the lin-
ear orderings of neighborhoods of vertices of each part is still preserved (there is
a reversing).

Remark. It is easy to verify that a co-bipartite chain graph can be represented
as the intersection graph of open intervals of the form (−∞, x) or (x,+∞) where
x ∈ R.

We use the shorthand [n] for the set {1, . . . , n} and lg to denote logarithm to
the base 2.

3 Equivalence cover for ∂EPG graphs
Let us befriend this new class of graphs by taking a close look at the subclass of
two-sided ∂EPG graphs. In a two-sided ∂EPG graph, the set of all the boundary
points which generate the paths are restricted to lie on two adjacent boundaries
of the grid. Without loss of generality, we may assume that all the paths are
restricted to start from the top boundary and bend towards the right boundary.
The following characterization reaffirms the feeling that we have met two-sided
∂EPG graphs in many guises before.

Theorem 3.1. The following conditions are equivalent for a graph G:

(i) G is a two-sided ∂EPG graph.

(ii) G has equivalence covering number at most 2.

(iii) The reduced graph of G has product dimension at most 2.

(iv) G is the line graph of a bipartite multigraph.

(v) G contains no claw, no gem, no 4-wheel, and no odd hole.

(vi) The clique graph of G, i.e., the intersection graph of maximal cliques in G,
is bipartite.
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Proof. We show that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). The equivalence
(iv) ⇐⇒ (v) is Theorem 4 in [20]. It is easy to verify that (iv) =⇒ (vi) =⇒
(ii).

(i) =⇒ (ii): Let G be a two-sided ∂EPG graph. If two boundary-generated
paths share a horizontal edge, then they have the same generating end point on
the right boundary. Hence they share the horizontal edge incident on that right
boundary-point. Similarly, if two boundary-generated paths share a vertical edge,
then they share the vertical edge incident on their top boundary-point. Now if
we consider two subgraphs Gh and Gv of G where two vertices are adjacent in Gh

(resp., Gv) if and only if the two corresponding boundary-generated paths share
a horizontal edge (resp., vertical edge). It is easy to verify that G = Gh ∪Gv, and
the above discussion shows that both Gh and Gv are equivalences.

(ii) =⇒ (iii): Suppose that a graph G can be covered by two spanning equiv-
alence graphs Gh and Gv. Let Gh (resp., Gv) be the disjoint union of cliques
H1, . . . , Hk (resp., V1, . . . , Vl). To every vertex x in G, we assign an ordered pair
φ(x) = (i, j), where Vi is the (unique) clique in Gv which contains x and Hj is
the (unique) clique in Gh which contains x. If G has no true-twins, then φ is an
injective labeling. Two vertices x and y are adjacent in G if and only if φ(x) and
φ(y) agree in at least one coordinate. Hence φ is a product 2-encoding of G and
thus pdim(G) ≤ 2.

(iii) =⇒ (iv): Let H be a reduced graph with a product 2-encoding φ : V (H)→
[k] × [l]. Consider the bipartite graph X on parts A = {a1, . . . , ak} and B =
{b1, . . . , bl} with ai ∈ A adjacent to bj ∈ B if and only if there exists a vertex
v ∈ V (H) with φ(v) = (i, j). Two edges ofX are adjacent only if the corresponding
ordered pairs agree in at least one coordinate. Hence the line graph of X is
isomorphic to H. If H had false twins, we can do the same construction of X for
the reduced graph of H and then represent the false twins of H with multi-edges
in X.

(iv) =⇒ (i): Let X be a bipartite multi-graph with parts A = {a1, . . . , ak} and
B = {b1, . . . , bk}. Consider the (k + 1)× (l + 1) grid G. Assign to every edge aibj
in X, the boundary-generated single-bend path starting from the i-th boundary-
point on the top boundary of G and ending at the j-th boundary-point on the
right boundary of G. It is easy to verify that we have a ∂EPG representation of
L(X), the line graph of X.

Notice that two-sided ∂EPG graphs is a subclass of the L-shaped B1-EPG
graphs. The recognition problem is NP-complete for the latter class [6], while
it is easily seen, for instance by characterization (iv) of Theorem 3.1 above, to
be poly-time for our new friend, the class of two-sided ∂EPG graphs. Once we
discovered that two-sided ∂EPG graphs have equivalence covering number at most
2, it was natural to investigate the equivalence covering number of three-sided and
general (i.e., four-sided) ∂EPG graphs. In Section 4, we establish that, unlike the
case with two-sided ∂EPG graphs, the equivalence covering number of three-sided
and four-sided ∂EPG graphs can be unbounded. In particular, we prove that the
maximum possible equivalence covering number of an n-vertex ∂EPG graph is
Θ(lg n). Our main tool to study ∂EPG graphs is the following covering theorem,
where co-bipartite chain graphs steal the limelight from cliques.
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Theorem 3.2. If G is a ∂EPG graph, then G can be covered by two graphs Gh

and Gv, where both Gh and Gv are vertex-disjoint unions of co-bipartite chain
graphs. Moreover, if G is three-sided ∂EPG, then Gv can be further restricted to
be an equivalence graph.

Proof. Let 〈P ,G〉 be a ∂EPG representation of G. Consider two subgraphs Gh

and Gv of G on V (G) defined as follows:

(i) E(Gh) consists of all the pairs of paths in P which share some horizontal
edge of the grid G.

(ii) E(Gv) consists of all the pairs of paths in P which share some vertical edge
of the grid G.

It is easy to see that the two graphs are subgraphs of G such that G = Gh∪Gv.
It can also be checked that the paths whose horizontal parts are at the same height
in the grid form a co-bipartite chain subgraph and thatGh is a vertex disjoint union
of such co-bipartite chain graphs, one co-bipartite chain graph for each horizontal
level of the grid used. Similarly Gv is also a disjoint union of co-bipartite chain
graphs.

If P does not contain any paths which use the top boundary of G, then it is
clear that all the paths which share a vertical edge share a vertical edge incident
on the bottom boundary and hence form a clique. Hence Gv will be a disjoint
union of cliques.

We explore two consequences of Theorem 3.2. In Section 4, we use it to give
a good upper bound on the equivalence covering number of ∂EPG graphs. In
Section 5, we use it as the first step towards giving a complete characterization of
∂EPG trees.

4 Bounding the equivalence covering number of
∂EPG graphs

We start by studying the equivalence covering number of co-bipartite chain graphs,
or equivalently, the product dimension of bipartite chain graphs.

Consider the following two encoding schemes for numbers in Zn = {0, . . . , n−
1}. Let k = dlg ne + 1. Then the encodings f : Zn → Zk

n and g : Zn → [n]k are
defined as follows.

f(i) =
(
b i
20
c, b i

21
c, . . . , b i

2k−1 c
)
, and

g(i) = f(i) + (1, . . . , 1).
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For example, if n = 8, the f and g are as below.

i f(i) g(i)
0 (0, 0, 0, 0) (1, 1, 1, 1)
1 (1, 0, 0, 0) (2, 1, 1, 1)
2 (2, 1, 0, 0) (3, 2, 1, 1)
3 (3, 1, 0, 0) (4, 2, 1, 1)
4 (4, 2, 1, 0) (5, 3, 2, 1)
5 (5, 2, 1, 0) (6, 3, 2, 1)
6 (6, 3, 1, 0) (7, 4, 2, 1)
7 (7, 3, 1, 0) (8, 4, 2, 1)

The important property of this encoding is that f(i) and g(i′) agree in at least one
position if and only if i > i′. Indeed, if i ≤ i′ every coordinate of g(i′) is strictly
greater than the corresponding coordinate of f(i); and if i > i′, one can verify that
bi/2lc = bi′/2lc+ 1 when l = blg(i− i′)c. Also notice that f(i) and f(i′) agree on
the last coordinate for every i and i′. Similarly, g(i) and g(i′) agree on the last
coordinate for every i and i′. We use this encoding to prove an upper bound on the
product dimension of bipartite chain graphs. We will use the following Proposition
from [19] to show that this upper bound is tight up to additive constants.

Proposition 4.1. ([19]; Proposition 5.3) Let x1, . . . , xk be distinct vertices of
a graph G such that for some y1, . . . , yk ∈ V (G) we have xiyi ∈ E(G),∀i ∈ [k] and
xiyj 6∈ E(G), ∀i < j. Then pdim(G) ≥ lg k.

Theorem 4.2. If H is a bipartite chain graph on n vertices, then the product
dimension of H is at most dlg ne + 1. Moreover, there exists a bipartite chain
graph on n vertices with product dimension at least dlg ne − 1.

Proof. Let G be a bipartite chain graph on n vertices. Recall that the co-bipartite
chain graph G can be represented as the intersection graph of open intervals on
the real line which are infinite in exactly one direction. Without loss of generality,
let us assume that the finite end-point of each interval is a unique integer between
0 and n − 1. Now we describe an encoding for each interval using k coordinates
(k = dlg ne + 1) such that the encodings of two intervals agree on at least one
coordinate if and only if the intervals intersect. This gives a product encoding of
G and hence will prove the upper bound.

Let L denote the collection of intervals in the representation of G which are
infinite to the left and R denote the collection of intervals which are infinite to the
right. For an interval I ∈ L with right end-point i where i ∈ Zn, the encoding for
I is f(i). For an interval I ′ ∈ R with left end-point i′ where i′ ∈ Zn, the encoding
for I ′ is g(i′). It can be checked that the encodings for two intervals in L agree on
the last coordinate. So do two intervals in R. For two intervals I = (−∞, i) ∈ L
and I ′ = (i′,+∞) ∈ R, their encodings agree in at least one coordinate if and
only if i > i′, i.e., if and only if I ∩ I ′ 6= ∅.

Now we show that this upper bound is nearly tight. Let G be a bipartite graph
on n = 2k vertices with parts {x1, . . . , xk} and {y1, . . . , yk} such that xiyi ∈ E(G)
if and only if i ≥ j. By Proposition 4.1, pdim(G) ≥ lg k = lg n − 1. It is easy to
check that G does not contain an induced 2K2 and hence G is a bipartite chain
graph.
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Hence, a co-bipartite chain graph on n vertices can be covered by at most
dlg ne+ 1 equivalence graphs.. It is also useful to note the following easy observa-
tion.

Observation 4.3. If G is the union of two graphs G1 and G2 on the same vertex
set, then eq(G) ≤ eq(G1) + eq(G2). Further, if G is a disjoint union of two
non-trivial graphs G1 and G2 (on two different vertex sets), then the eq(G) =
max{eq(G1), eq(G2)}.

The main result of this section now follows from Theorem 3.2, the above ob-
servation, and Theorem 4.2. Also note that every co-bipartite chain graph can be
represented as a ∂EPG graph using boundary generated paths, all of which lie in
the same row of the grid. Thus, they are three-sided ∂EPG.

Theorem 4.4. If G is a ∂EPG graph on n vertices, then eq(G) ≤ 2dlg ne +
2. Further, if G has a three-sided ∂EPG representation then eq(G) ≤ dlg ne +
2. Moreover, there exist n-vertex three-sided ∂EPG graphs Gn with equivalence
covering number at least dlg ne − 2.

5 Characterizing and recognizing ∂EPG trees
We know that every tree is a B1-EPG graph [13]. The restriction to use only
boundary-generated paths disqualifies a large portion of trees. One can verify
using the geometry of a grid that the maximum degree of a ∂EPG tree is at
most 4. In this section, we characterize trees which have a ∂EPG representation.

In the following, we refer to edges and paths in a tree just as “edges” and
“paths”, while we refer to edges of a grid and to paths in an EPG representation
as “grid-edges” and “grid-paths”.

A linear forest is a forest in which every connected component is a path. A lin-
ear k-forest is a linear forest in which every path has at most k edges (i.e., at most
Pk+1, a path on k + 1 vertices). The linear k-arboricity lak(G) of a graph G is
the minimum number of linear k-forests whose union is G; see Figure 2 for an
illustration. Notice that the linear 1-arboricity of a graph is its chromatic index.
This parameter was introduced by Habib and Peroche in 1982 [15].

(a) (b) (c)

Figure 2: Figures (a) and (b) illustrates two edge-disjoint 3-linear forests over the
same vertex-set, whose union in (c) is a tree.

Note that a triangle-free clique is a single edge, a triangle-free co-bipartite
chain graph is a subgraph of P4, a path on 4 vertices, and that a triangle-free
graph has the same equivalence covering number and chromatic index. Hence,
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the following is an immediate corollary of Theorems 3.2 and 3.1 for triangle-free
∂EPG graphs.

Corollary 5.1. If G is a triangle-free ∂EPG graph, then G can be covered by two
linear 3-forests. Moreover, if G has a three-sided ∂EPG representation, then one
of the forests can be restricted to be a matching of edges (1-forest). Finally, if G
has a two-sided ∂EPG representation, then G is a disjoint union of two matchings,
that is, G is a disjoint union of paths and even cycles.

The next result shows that the converse of Corollary 5.1 is true for trees.

Theorem 5.2. A tree T is a ∂EPG graph if and only if T can be covered by two
linear 3-forests. Moreover, T has a three-sided (resp. two-sided) ∂EPG represen-
tation if and only if we can restrict one (resp. both) of the above forests to be
a disjoint collection of edges.

One direction of the above theorem follows from Corollary 5.1. For the other
direction, we need to introduce a new partial-order extension question.

Let A = {A1, . . . , Ak} and B = {B1, . . . , Bk′} be two edge-disjoint linear 3-
forests whose union is a tree T . We will realize each Ai as the grid-edge-intersection
graph of a collection of grid-paths whose vertical part is at the same column ci
in the grid. Similarly, we will realize each Bj as the grid-edge-intersection graph
of a collection of grid-paths whose horizontal part is at the same row rj in the
grid. We have two kinds of choices and one constraint. Firstly, a P4 has essen-
tially two ways of being realized as the edge-intersection graph of a collection of
horizontal (vertical) grid-paths with at least one end point on a vertical (horizon-
tal) boundary of the grid. One representation is the left-to-right (top-to-bottom)
mirrored version of the other. Secondly, we have the freedom to choose the rel-
ative order among ci’s and the relative order among rj’s. The constraint comes
from the fact that A and B are graphs over the same vertex set. Hence, a rep-
resentation we choose for each Ai imposes a partial order on some rj’s, namely
on {rj : V (Ai) ∩ V (Bj) 6= ∅}. There is a similar restriction on ci’s arising from
the representation of the Bj’s. We formalize this constraint using the language
of partial orders, and then show that the second freedom suffices to satisfy this
constraint.

Definition 5.3. Let V be a set and let S be a partition of V . Further let ≺V and
≺S be partial orders, respectively, on V and S. We say that ≺S is ≺V -preserving
if, for every pair of vertices u, v ∈ V with u≺V v we have Su≺S Sv where Su and
Sv are, respectively, the (unique) members in S containing u and v.

Notice that, in general, preserving orders do not necessarily exist; for exam-
ple, the partition {{1, 4} , {2, 3}} of {1, . . . , 4} has no <-preserving order. Given
a partition S of the ground-set V of a partial order ≺V , let D be the directed
multigraph (possibly with self-loops) on the vertex-set S which contains one di-
rected edge from Su to Sv for each comparable pair u≺V v in V , where Su and Sv

are, respectively, the sets in S containing u and v. One can verify that there exists
a ≺V -preserving total order ≺S on S if and only if D does not contain a directed
cycle. In fact, if D is acyclic, then any topological sorting of D is a ≺V - preserving
total order. Next, we show that this is indeed the case that we will face.
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Lemma 5.4. Let T be a tree and let A and B be two edge-disjoint sub-forests of T .
Further let ≺b be a partial order on V (T ), in which any two comparable vertices
lie in the same connected component of B. Then there exists a ≺b-preserving total
order ≺A among the connected components of A.

Proof. Let TA be the tree obtained from T by contracting all the edges in the forest
A. Since contracting an edge of a tree produces another tree (without any loops
or multiple edges), TA is a tree. Each vertex of TA corresponds to a connected
component in A and is labeled by it. Our goal is to define a ≺b-preserving total
order on the vertices of TA and thereby among the connected components of A.

Let B ∈ B be a subtree of T with vertices v1, . . . , vt. For 1 ≤ i ≤ t, the
vertex vi belongs to a distinct tree Ai ∈ A, which corresponds to a distinct vertex
Ai ∈ TA (as otherwise T contains a cycle). Since B is connected, the vertices
A1, . . . , At form a connected subgraph (i.e, a subtree) of TA, which we denote by
TA[B]. Removing the edges of TA[B] from TA results in a forest FB with t subtrees
T 1
A, . . . , T

t
A, where Ai ∈ T i

A.
Since any other tree B′ ∈ B is edge-disjoint from B, for every B′ ∈ B \ {B},

the tree TA[B′] is a subtree of FB. Hence, vertices from any two different subtrees
T i
A, T

j
A, i 6= j, are incomparable by ≺′

b, where ≺′
b is the partial order obtained from

≺b by ignoring all the relations between vertices in B. Inductively, the vertices
of each of these subtrees, can be ordered to preserve ≺′

b. We concatenate the t
resulting orders into a single ordering ≺A according to the order of v1, v2, . . . , vt
determined by ≺b. It is easy to verify that ≺A is ≺b-preserving.

Proof of Theorem 5.2. One direction of the theorem follows from Corol-
lary 5.1. We only need to show the converse. Let A and B be two edge-disjoint
spanning 3-forests which cover a tree T .

We define an ordering≺b on V (T ) as follows: For each pathBi = (v1, v2, v3, v4) ∈
B, define v1≺b v3≺b v2≺b v4, where vl+2, . . . , v4 will be absent if the path is of length
l ∈ {0, 1, 2}. Notice firstly that if we place the vertices of B on the real line accord-
ing to ≺b and consider the intervals (−∞, v1), (−∞, v2), (v3,+∞) and (v4,+∞),
the corresponding interval graph will be a representation of the path B.

Notice secondly that two vertices in different connected components of B are
incomparable. Hence by Lemma 5.4, there exists a ≺b-preserving total order ≺A
among the connected components of A. Similarly, we define a partial order ≺a on
V (T ) comparing only those pairs of vertices in the same connected component of
A and a ≺a-preserving total order ≺B among the connected components of B. In
the remainder of the proof we assume that the elements of A = {A1, . . . , Ak} and
B = {B1, . . . , Bk′} are indexed according to ≺A and ≺B respectively.

We now depict a four-sided ∂EPG representation of T . Let v ∈ V (T ) and
suppose v ∈ Ai ∩ Bj. Associate with v a grid-path Pv bending at the grid-point
(i, j). Notice that the grid-paths that correspond to vertices in Ai (resp. Bj) all
bend at column i (resp. row j). Moreover, their order along the columns (resp.
rows) preserves their order in ≺b (resp. ≺a). For each column i of the grid, direct
the |Ai| grid-paths with bend points on that column upwards or downwards so
that their intersection graph is the path Ai. Similarly, for each row j of the grid,
direct the Bj grid-paths with bend points on that row leftwards or rightwards so
that their intersection graph is the path Bj.
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Figure 3: The label propagation rules for Algorithm 5.5

By construction, grid-paths Pv and Pu share a vertical (resp. horizontal) grid-
edge iff the corresponding vertices of T are adjacent, and the edge connecting
them is covered by A (resp. B), which concludes the proof.

The proof for the cases of three-sided and two-sided representations is similar
by directing all grid paths to the same direction. Assume A is a disjoint collection
of edges, then at most two grid-paths bend at the same column, and can be
directed downwards. Similarly, if both A and B are disjoint collections of edges,
then every grid-paths can be directed leftward and downwards, resulting with
a ¬-shape grid-path.

Theorem 5.2 tells us that the problem of recognizing ∂EPG trees is the same
as deciding whether the linear 3-arboricity of a tree is at most 2. In [7], Chang et
al., give a linear time algorithm to find the linear k-arboricity of a tree. We can
use the same algorithm to recognize ∂EPG trees. The case with three-sided ∂EPG
trees gets a bit more tricky because of the asymmetry in the cover. Still, extending
the idea in [7], we give a linear-time algorithm for recognizing three-sided ∂EPG
trees.

Algorithm 5.5. The input to the algorithm is a tree T . The algorithm decides
whether T can be covered by a matching M and a linear 3-forest F .

Step 1 : If the maximum degree of T is more than 3, reject. Otherwise, root the
tree at a leaf vertex so that every vertex in the tree has at most 2 children.

The algorithm tries to label each edge e of T , starting with the leaf-edges
and going up, such that the label encodes the possible places for e in the
cover: (i) the label M denotes that e can belong to M but not to F . (ii)
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the label Fi denotes that e cannot belong to M but e can be the i-th edge
of a P4 in F , counting towards the root. (That is, if we consider a P4 as a
subtree T ′ of T rooted at the vertex in the P4 nearest to the root of T , then
all the edges incident to a leaf of T ′ will be labeled F1, the edges incident to
a leaf of T ′ with all the F1-labeled edges removed will be labeled F2 and so
on.) (iii) the label (M,Fi) denotes that e can either belong to M or it can
be the i-th edge of a P4 in F , counting towards the root, and (iv) the label
FAIL denotes that the edge e can be neither in M nor in F and hence T is
not a three-sided ∂EPG.

Step 2 : Label every leaf-edge with (M,F1).

A vertex of T is called penultimate if it is not a leaf and all its children are
leaves.

Step 3 : Let x be a penultimate vertex in T farthest from the root. Accept T if x is
the root. Otherwise, delete all the leafs of x and label the parent edge yx of
x according to the rules depicted in Fig. 3, with the following two additional
sanity rules: (i) if yx gets a label F4, it is relabeled FAIL, and (ii) if yx gets
a label (M,F4), it is relabeled M .

Step 4 : Reject T if the label on yx is FAIL. Otherwise go back to Step 3.

Since the algorithm visits each edge at most twice, once to label it, and once
to label its parent edge, it is clear that the algorithm runs in linear-time.

Correctness of Algorithm 5.5. Verifying the correctness of the algorithm is
essentially verifying that, for each of the label propagation rules depicted in Fig. 3,
the initial tree can be covered with M and F , respecting the constraints indicated
by the labels on the leaf-edge, if and only if the same holds for the resulting tree.

For example, consider the first rule. If the leaf-edge at x has to be in M , then
the edge yx has to be the first edge of a P4 in F . Also, if yx is the first edge of
a P4 in F , then the leaf-edge at x can safely be in M . Hence, the first tree can be
covered with a matching and a linear 3-forest such that the leaf-edge at x belongs
to the matching if and only if the second tree can be covered by a matching and
a linear 3-forest such that the edge yx is the first edge of a component in the linear
3-forest.

As a second example, consider the final rule. When i + j ≤ 3, we have two
options: (i) we can cover the two leaf edges with a Pi+j and the edge yx with M ,
or (ii) cover the right leaf-edge with M and cover the left leaf-edge and x with
F . (Covering the left leaf-edge with M is at most as good as covering the right
leaf-edge with M .) These two options give rise to the options indicated by the
label on the edge xy in the resulting tree. When i+j > 3, the first option above is
no longer available, and hence we have fewer options on that branch. The analysis
for all the other rules is similar.

6 Conclusion and Open Questions
We introduce in this paper, the boundary generated EPG graphs, which more ac-
curately model circuits where each wire (i.e., path) must be anchored at a terminal
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on the boundary of a rectangular grid. Several open questions remain.
We do not know yet whether one can efficiently recognize ∂EPG graphs.

Though the problem is linear-time solvable on trees, we suspect that it might
be NP-hard in general.
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