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Abstract. A linear ordering of the vertices of a graph G separates two
edges of G if both the endpoints of one precede both the endpoints of
the other in the order. We call two edges {a, b} and {c, d} of G strongly
independent if the set of endpoints {a, b, c, d} induces a 2K2 in G. The
induced separation dimension of a graph G is the smallest cardinality
of a family L of linear orders of V (G) such that every pair of strongly
independent edges in G are separated in at least one of the linear orders
in L. For each k ∈ N, the family of graphs with induced separation
dimension at most k is denoted by ISD(k).
In this article, we initiate a study of this new dimensional parameter. The
class ISD(1) or, equivalently, the family of graphs which can be embed-
ded on a line so that every pair of strongly independent edges are disjoint
line segments, is already an interesting case. On the positive side, we give
characterizations for chordal graphs in ISD(1) which immediately lead
to a polynomial time algorithm which determines the induced separa-
tion dimension of chordal graphs. On the negative side, we show that
the recognition problem for ISD(1) is NP-complete for general graphs.
We then briefly study ISD(2) and show that it contains many impor-
tant graph classes like outerplanar graphs, chordal graphs, circular arc
graphs and polygon-circle graphs. Finally, we describe two techniques to
construct graphs with large induced separation dimension. The first one
is used to show that the maximum induced separation dimension of a
graph on n vertices is Θ(lg n) and the second one is used to construct
AT-free graphs with arbitrarily large induced separation dimension.

1 Introduction

Vertex orderings which meet certain local conditions have turned out to be a
very useful tool in the study of graphs. Perfect elimination orderings of a chordal
graph is perhaps the most striking example. Graph families like comparability
graphs, interval graphs, unit interval graphs, strongly chordal graphs and thresh-
old graphs can be characterized based on the existence of a vertex ordering with
a certain simple property [4, 8]. Such orderings are useful not just in providing
structural insights into the family, but also in designing efficient algorithms on
those families for problems which are NP-hard on general graphs. In addition,
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some of these algorithms can be extended to a larger family formed by working
with a small family of vertex orderings rather than a single one. Such extensions
have resulted in the introduction of many “dimensional” parameters on graphs
like boxicity [18], cubicity [18], threshold dimension [7], hypergraph dimension
[10], separation dimension [2], etc. and efficient algorithms on families in which
one of these dimensions is bounded.

In this article, we use vertex orderings to define a graph parameter, which we
call “induced separation dimension”, and show that several interesting classes of
graphs have a small induced separation dimension.

Let σ be a linear order on the elements of a set U . For two disjoint subsets A
and B of U , we say A ≺σ B when every element of A precedes every element of
B in σ, i.e., a ≺σ b, ∀(a, b) ∈ A×B. We say that σ separates A and B if either
A ≺σ B or B ≺σ A.

Definition 1 (Induced separation dimension). Two edges {a, b} and {c, d}
of a graph G are called strongly independent if G[{a, b, c, d}], the subgraph of G
induced on vertices {a, b, c, d}, is isomorphic to 2K2, the disjoint union of two
edges. A family L of linear orders of V (G) is called weakly separating if every
pair of strongly independent edges in G is separated in at least one order in
L. The smallest cardinality of a weakly separating family of linear orders for G
is called the induced separation dimension of G and is denoted by isd(G). For
each k ∈ N, the family of graphs with induced separation dimension at most k
is denoted by ISD(k).

For example, one may easily check that a complete graph, a chordless path on
at least 5 vertices and a chordless cycle on at least 6 vertices have induced sepa-
ration dimension, respectively, 0, 1 and 2. Indeed, a graph G has induced separa-
tion dimension 0 if and only if G is 2K2-free or, equivalently, if the complement
graph G is C4-free. Hence, ISD(0) = {G : G is 2K2-free} =

{

G : G is C4-free
}

.
The family of 2K2-free graphs have received considerable attention in literature,
resulting in many structural, algorithmic and extremal results [6, 16, 5]. The left
endpoint order of an interval representation of an interval graph separates ev-
ery pair of strongly independent edges. Hence, interval graphs belong to ISD(1).
Every pair of strongly independent edges in a (rooted) tree is separated either
in the DFS pre-order or in the DFS post-order traversal. Thus, trees belong to
ISD(2).

Relation to separation dimension. The cardinality of a smallest family L of linear
orders on the vertices of a graph G such that every pair of non-incident edges
(two edges with no common endpoints) is separated in at least one of the linear
orders in L is called the separation dimension of G [2]. There has been a detailed
recent study on the separation dimension of graphs and hypergraphs [1–3]. It
follows by definition that the induced separation dimension of a graph is at most
its separation dimension. In particular, the induced separation dimension of an
n-vertex graph is at most O(lg n) [3].

But, what we find more interesting is the difference between the two notions.
One of the main sources of this difference is that, while separation dimension is a
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monotone parameter (adding edges cannot decrease the separation dimension of
a graph), induced separation dimension is not. Thus, dense graphs, even if highly
structured, tend to have large separation dimension. On the other hand, induced
separation dimension of some dense but structured graph families is very low.
For instance, while separation dimension of cocomparability graphs and chordal
graphs is unbounded, their induced separation dimension, as we establish here, is
bounded above by 1 and 2 respectively. Their difference is also highlighted by the
fact that while the family of graphs with separation dimension 1 has a complete
characterization which leads to an easy linear-time recognition algorithm [3], we
show here that it is NP-complete to decide whether a graph belongs to ISD(1).

1.1 Results and organization

We begin by showing that a weakly separating family of linear orders for a graph
G corresponds closely with a special family of acyclic orientations of the com-
plement graph G (Section 2). This characterization is later used to derive both
upper and lower bounds on induced separation dimension and also to establish
an NP-hardness result.

In Section 3, we focus on the graph class ISD(1), i.e., graphs with a single
vertex ordering that separates every pair of strongly independent edges. The
characterization mentioned above helps us conclude that all cocomparability
graphs belong to ISD(1). The same characterization is also used to establish NP-
hardness of the recognition problem for ISD(1). We then describe a forbidden
configuration for graphs in ISD(1), namely, an asteroidal triple of edges (ATE)
and show that a chordal graph belongs to ISD(1) if and only if it is ATE-free.
We also note that a tree belongs to ISD(1) if and only if it is a caterpillar with
toes.

In Section 4, we go one step further and briefly study the graph class ISD(2).
The main result here is that ISD(2) contains the class of interval filament graphs.
Since the class of interval filament graphs contains many important graph classes
like chordal graphs, circular arc graphs and polygon-circle graphs, we conclude
that all of them belong to ISD(2). Since chordal graphs belong to ISD(2) and the
characterization of chordal graphs in ISD(1) as ATE-free graphs is testable in
polynomial time, we get a poly-time algorithm to determine the induced separa-
tion dimension of chordal graphs. From the literature on separation dimension,
we know that outerplanar graphs belong to ISD(2) and planar graphs belong to
ISD(3) [3]. We do not yet know whether planar graphs belong to ISD(2).

Finally, in Section 5, we describe two techniques to construct graphs with
large induced separation dimension. Using the first one, we construct n-vertex
graphs with induced separation dimension at least lgn, showing that the upper
bound of O(lg n) which follows from the relation to separation dimension is
tight up to a constant factor. The second construction is used to show that the
family of AT-free graphs have unbounded induced separation dimension, in stark
contrast to its subfamily of cocomparability graphs.



4 Ziedan et al.

1.2 Notations and definitions

All graphs we study here are finite and simple. The vertex set and edge set
of a graph G are denoted by V (G) and E(G) respectively. For a graph G and
S ⊂ V (G), the subgraph of G induced on S is denoted by G[S]. The complement
graph ofG is denoted byG. A graph is calledH-free if it has no induced subgraph
isomorphic to H . For a vertex v of G, N(v) denotes the set of neighbors of v
and N [v] = N(v) ∪ {v}.

The complete graph and the chordless cycle on n vertices are denoted, re-
spectively, by Kn and Cn. The vertex disjoint union of k different copies of a
graph is denoted by kG. In particular 2K2 denotes two strongly independent
edges.

A cocomparability graph is an undirected graph that connects pairs of ele-
ments that are not comparable to each other in a partial order, i.e., the comple-
ment of a comparability (transitively orientable) graph. A graph is called chordal
if it has no induced cycles of size strictly greater than 3. An interval graph is an
intersection graph of intervals on the real line, and a unit interval graph is an
intersection graph of unit length intervals on the real line. An independent triple
of vertices x, y, z in a graph G is an asteroidal triple (AT) if, between every pair
of vertices in the triple, there is a path that does not contain any neighbor of
the third. A graph without asteroidal triples is called an asteroidal triple-free
(AT-free) graph. A graph is outerplanar if it has a crossing-free embedding in
the plane such that all vertices are on the same face. A caterpillar is a tree with
a dominating path, and a caterpillar with toes is a tree with a 2-step dominating
path. A 2-step dominating path in a graph G is a path P such that every vertex
of G is at distance at most 2 from P .

2 Linear orders and orientations of the complement

We start by giving a graph invariant that is equal to the induced separation
dimension of the complement graph. This equivalent view will be useful in some
of the proofs to come later.

Definition 2 (C4-transitive orientations). An acyclic orientation of an undi-
rected simple graph G is an assignment of directions to each edge of G so that
no directed cycles are formed. A family O of acyclic orientations of G is called
C4-transitive on G if every induced C4 in G is oriented transitively in at least one
orientation in O. The minimum cardinality of a C4-transitive family of acyclic
orientations of G is denoted by η(G).

Theorem 3. For every undirected simple graph G,

isd(G) = η(G).

Proof. Let L be a family of linear orders that is weakly separating for G. For
every linear order σ ∈ L we define an orientation Oσ of G as follows. An edge
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{u, v} of G where u ≺σ v is oriented from u to v (denoted −→uv). This orientation
of G is obviously acyclic. We claim that the family of acyclic orientations {Oσ :
σ ∈ L} is C4-transitive on G. Let (a, b, c, d) be an induced C4 in G. Then the
pair of edges ac and bd forms an induced 2K2 in G. Let σ ∈ L be the total order
which separates the edges ac and bd of G. That is, we have either {a, c} ≺σ {b, d}
or {b, d} ≺σ {a, c}. In both cases, it is easy to check that Oσ is transitive on the
cycle (a, b, c, d).

In the other direction, given a family O of acyclic orientations that is C4-
transitive on G, we construct a family of total orders {≺O: O ∈ O} on V (G),
where for each O ∈ O, the total order ≺O is a linear extension of the transitive
closure of O. We claim that {≺O: O ∈ O} is weakly separating for G. Let the
pair of edges ab and cd be an induced 2K2 in G. Then (a, c, b, d) is an induced C4

in G. Let O ∈ O be the orientation of G which is transitive on (a, c, b, d). There

are only two possible transitive orientations for this cycle, namely {−→ac,
−→
ad,

−→
bc,

−→
bd}

and the orientation obtained by reversing all the directions in the first one. It is
easy to check that {a, b} ≺O {c, d} in the first case and {c, d} ≺O {a, b} in the
second case. ⊓⊔

3 The graph class ISD(1)

The following corollary is a restatement of Theorem 3 for ISD(1) and the next
one is then immediate.

Corollary 4. A graph G belongs to ISD(1) if and only if there exists an acyclic
orientation of G which is transitive on every induced 4-cycle of G.

Corollary 5. The family of cocomparability graphs is contained in ISD(1).

Remark. The path on 5-vertices P5 is an interval graph and has a pair of strongly
independent edges. Hence, interval graphs and thereby cocomparability graphs
are not contained in ISD(0).

Next we use Corollary 4 to show that the recognition problem for ISD(1) is
NP-hard. We do this by reducing the 2-coloring problem on 3-uniform hyper-
graphs to the problem of deciding whether η(G) ≤ 1 for a graph G.

A 3-uniform hypergraph H over a set of vertices V is a collection of 3-element
subsets of V , called hyperedges. A proper coloring of H is a coloring of V so
that every hyperedge in H contains vertices of at least two different colors. A
hypergraph is called 2-colorable if it can be properly colored using 2 colors. It is
a result of Lovász from 1973 that testing 2-colorability of 3-uniform hypergraphs
is NP-hard [15].

Theorem 6. Problem 1 below is polynomial-time reducible to Problem 2.

Problem 1. Given a 3-uniform hypergraph H, decide whether H is 2-colorable.
Problem 2. Given a graph G, decide whether η(G) ≤ 1.
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Proof. Let H contain n vertices v1, . . . , vn and m hyperedges e1, . . . , em. Let L
be a bipartite graph on 6m vertices with color classes A = {a1, . . . , a3m} and
B = {b1, . . . , b3m}. Vertices ai and bj are adjacent in L if and only if |i− j| ≤ 1.
(L is a 3m-ladder graph). For each i ∈ [3m− 1], (ai, bi, ai+1, bi+1) is an induced
C4 in L and these are all the induced C4’s in L. There are only two orientations
of L which are transitive on every induced C4; one which orients every edge from
A-side to B-side and the other which orients every edge from B-side to A-side.

To construct G, we first associate a different copy L(v) of the ladder L for
each vertex v of H . For each hyperedge el = {vi, vj , vk}, i < j < k, we glue
together the three ladders L(vi), L(vj) and L(vk) at their 3l-th level as follows:
the vertex b3l of L(vi) is identified with the vertex a3l of L(vj); b3l of L(vj)
with a3l of L(vk); and b3l of L(vk) with a3k of L(vk); forming a 3-cycle. These
identifications do not create any new induced 4-cycles since we have chosen
to skip 3 levels of the ladder after the modification for each hyperedge. This
completes the construction of the graph G given the hypergraph H and it is
clearly polynomial time. We complete the proof by showing that η(G) ≤ 1 if and
only if H is 2-colorable.

Suppose that H is 2-colorable and let φ : V (H) → {0, 1} be a proper coloring
of H . Orient the edges of G as follows. If φ(v) = 0, orient every edge of L(v) in G

from A-side to B-side and if φ(v) = 1, orient every edge of L(v) fromB-side to A-
side. Since all the induced 4-cycles in G are subgraphs of the constituent ladders,
they are all oriented transitively. All the 3-cycles formed by the hyperedges are
oriented acyclically since each of them contains two vertices of different colors.
For every longer cycle C (length 4 or more), at least two consecutive edges of C
belong to the same ladder and hence C is oriented acyclically. Thus, the above
orientation of G is transitive on every induced C4 and acyclic. Thus η(G) ≤ 1.

In the other direction, suppose η(G) ≤ 1 and let O be an acyclic orientation of
G that is transitive on every induced C4 in G. As noted above, there are only two
possible orientations for each ladder that is transitive on every induced C4. Define
a coloring φ : V (H) → {0, 1} based on O as follows: φ(v) = 0 if the edges of L(v)
in G are oriented from A-side to B-side and φ(v) = 1 otherwise, i.e., if every
edge of L(v) is oriented from B-side to A-side. Since O is an acyclic orientation,
the 3-cycle corresponding to each hyperedge of H is oriented acyclically in O.
That is, every hyperedge contains vertices of both colors under φ. Thus, φ is a
proper 2-coloring of H . ⊓⊔

Since Problem 1 defined in Theorem 6 is NP-hard [15], so is Problem 2.
Moreover, Problem 2 is in NP since the number of induced 4-cycles in a graph
is polynomial in the number of vertices. Hence, by Corollary 4, we conclude the
following.

Corollary 7. The recognition problem for ISD(1) is NP-complete.

Next, we give a configuration that is forbidden for graphs in ISD(1). This
will turn out to be useful in characterizing trees and chordal graphs in ISD(1).
The closed neighborhood of an edge {u, v} in a graph G is the set N [u] ∪N [v].
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Definition 8 (ATE-free graph). An asteroidal triple of edges (ATE) in a
graph G is a collection of three edges in G such that, between every pair of
them, there exists a path in G which does not contain any vertex in the closed
neighborhood of the third edge. A graph without an ATE is called ATE-free.
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Fig. 1. Examples of graphs with an asteroidal triple of edges. The three edges which
form an asteroidal triple are drawn with thicker lines.

Some examples of graphs with an ATE are depicted in Fig. 1. Any ATE-free
graph is thus T3-free, ∆3-free, C6-free and so on.

Remark. Note that the three edges of an ATE themselves need not be pairwise
strongly independent, as illustrated by the cycle C6. Nevertheless, one can verify
that all AT-free graphs are ATE-free.

Theorem 9. All graphs in ISD(1) are ATE-free.

Proof. Let G ∈ ISD(1) and ≺ be a single linear order that separates all the
strongly independent edges in G. Suppose, for the sake of contradiction, that G
contains an ATE. Let aa′, bb′, and cc′ be the three edges forming an ATE in G.
Let Pa be the path between bb′ and cc′ which does not contain any vertex in the
closed neighborhood of aa′. Pb and Pc are defined similarly. It is clear that ≺
separates the edge xx′ from the set V (Px), for each x ∈ {a, b, c}. This demands
that no edge of the ATE is completely sandwiched between the endpoints of
another. Next we show that one of the above two conditions is violated by ≺.
This contradiction shall prove the theorem.

Let S = {a, a′, b, b′, c, c′}. We can assume, after relabelling if necessary, that
a ≺ a′, b ≺ b′, c ≺ c′ and a ≺ b ≺ c. So a is the first vertex of S in ≺. The next
vertex of S in ≺ is not a′, since in that case bb′ is not separated from V (Pb).
Hence, the second vertex from S in ≺ is b. The third vertex is not a′ for the
same reason. Neither is it b′ since, in that case bb′ is sandwiched between a and
a′. Hence, the third vertex is c. The fourth vertex is a′ since otherwise either bb′

or cc′ edge will be sandwiched between a and a′. The fifth vertex has to be b′

since otherwise cc′ will be sandwiched between b and b′. The sixth vertex is c′

by exhaustion. Thus, a ≺ b ≺ c ≺ a′ ≺ b′ ≺ c′. But in this case, V (Pb) is not
separated from bb′. ⊓⊔

The converse of Theorem 9 is not true in general. We show later that the fam-
ily of AT-free graphs and thereby the family of ATE-free graphs is not contained
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in ISD(k) for any constant k. Nevertheless, we show next that the converse of
Theorem 9 is true for chordal graphs, i.e., ATE-free chordal graphs belong to
ISD(1). We need to define a new notion to streamline the characterization.

Definition 10 (FAT-free graph). A vertex v in a graph G is called simplicial
if N(v) induces a clique in G. We call v lonely if v is simplicial but no neighbor
of v is simplicial. An asteroidal triple A in G is called fat if none of the three
vertices in A is lonely. The graph G is called FAT-free if it contains no fat
asteroidal triples.

Hence, every asteroidal triple of vertices in a FAT-free graph has a simpli-
cial vertex with no simplicial neighbor. We also need one observation regarding
chordal graphs with an AT.

Observation 11. If G is a chordal graph with an asteroidal triple, then G con-
tains an independent set of three simplicial vertices.

This observation can be verified by looking at a representation of G as an
intersection graph of subtrees of a host tree T with the additional property that
each node of T corresponds to a different maximal clique in G [12, Theorem
4.8]. Hence, each leaf of T is a subtree in the intersection model. These subtrees
correspond to an independent set of simplicial vertices in G. Since G has an AT,
the host tree T is not a path and therefore has at least 3 leaves.

Recalling that a caterpillar is a tree with a dominating path, we now state
and prove a characterization for chordal graphs in ISD(1).

Theorem 12. For a chordal graph G, the following are equivalent:

(i) G ∈ ISD(1).
(ii) G is ATE-free.
(iii) G is FAT-free.
(iv) G is an intersection graph of distinct subtrees of a caterpillar.

The proof is moved to the full version.

Remark. The requirement that the subtrees are distinct is essential in Condition
(iv) above. The family of graphs which have a representation as the intersec-
tion graph of (not necessarily distinct) subtrees of a caterpillar are called catval
graphs. The graph ∆3 depicted in Fig. 1 is a catval graph but it has an ATE and
therefore cannot be represented as an intersection graph of distinct subtrees of a
caterpillar. Catval graphs were introduced by Jan Arne Telle in [19] and further
studied by Habib, Paul and Telle in [14]. The tolerance version was studied by
Eaton and Faubert in [9]. The proof that (iii) =⇒ (iv) in the above theorem
mimics a similar proof in [9].

We conclude this section by specializing the above characterization for trees
in ISD(1). Recall that a caterpillar with toes is a tree with a 2-step dominating
path.
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Theorem 13. For a tree T the following are equivalent:

(i) T ∈ ISD(1).
(ii) T is ATE-free.
(iii) T is T3-free.
(iv) T is a caterpillar with toes.

Proof. Theorem 12 establishes the equivalence of (i) and (ii). (ii) =⇒ (iii) since
T3 contains an ATE. Any longest path in a T3-free tree is 2-step dominating [13]
and thus, (iii) =⇒ (iv). One can verify easily that (iv) =⇒ (ii) by a case
analysis. ⊓⊔

Remark. More characterizations of caterpillars with toes can be found in [13,
Theorem 3.7].

4 The graph class ISD(2)

Since outerplanar graphs have separation dimension at most 2 [3], they also
have induced separation dimension at most 2. This bound is tight since C6 is
outerplanar and isd(C6) > 1. In this section, we show that interval filament
graphs, a class introduced by Gavril [11], belongs to ISD(2). Interval filament
graphs contain many well known graph classes like chordal graphs, circular-arc
graphs (intersection graphs of arcs on a circle), polygon-circle graphs (intersec-
tion graphs of a convex polygons inscribed in a circle), etc. Thus, all of the above
families belong to ISD(2). Since isd(C6) = 2, and C6 is both a circular-arc graph
and a polygon-circle graph, both these classes are not contained in ISD(1).

Definition 14 (Interval filament graph [11]). Let I be a collection of in-
tervals on a horizontal line L embedded in a plane. In the half-plane above L,
construct corresponding to each interval I ∈ I a curve fI connecting the two
endpoints of I such that fI remains within the limits of I. The curve fI is called
an interval filament above I. A graph is an interval filament graph if it has an
intersection model consisting of interval filaments.

Theorem 15. The family of interval filament graphs are contained in ISD(2).

Proof. Let G be an interval filament graph and (I,F) be an interval filament
intersection model of G. That is, each vertex v of G has an associated interval
Iv ∈ I on a horizontal line L, and an interval filament fv ∈ F above Iv such that
G is the intersection graph of F . Also define l(v) and r(v) to be, respectively,
the left and right endpoints of Iv.

Let ≺l and ≺r be two linear orders on V (G) such that l(u) < l(v) =⇒ u ≺l v

and r(u) < r(v) =⇒ u ≺r v. We argue that any pair of strongly independent
edges ab and cd are separated in one of the two permutations above. If two
vertices u and v are non-adjacent in G, then the corresponding intervals Iu and
Iv are either disjoint or one is contained in the other. Without loss of generality,
let a be the vertex with the leftmost left endpoint among {a, b, c, d} and c be
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the vertex with the leftmost left endpoint among {c, d}. If ab is not separated
from cd in ≺l, then l(a) < l(c) < l(b). In this case, since ab is an edge of G,
Ia ∩ Ib 6= ∅, hence Ic ∩ Ia 6= ∅ and hence Ic ⊂ Ia. Since c and d are adjacent,
Ic ∩ Id 6= ∅, hence Id ∩ Ia 6= ∅ and hence Id ⊂ Ia. Now if Ib is contained in either
Ic or Id, we see that fb cannot intersect fa. Thus, Ib is disjoint from Ic and Id.
Moreover since l(c) < l(b) in the case under consideration, we see that Ib has to
be to the right of the interval Ic ∪ Id. Hence, {c, d} ≺r {a, b} in this case. ⊓⊔

Since chordal graphs are interval filament graphs they belong to ISD(2).
Hence, a chordal graph G has induced separation dimension either 0, 1 or 2.
It is clear that checking whether isd(G) = 0 can be done in polynomial time.
A naive algorithm which tests every triple of edges in G for being an ATE can
determine ATE-freeness in poly-time. Hence, by Theorem 12, we can test in
poly-time whether isd(G) = 1. In short, we have the following corollary.

Corollary 16. The induced separation dimension of chordal graphs can be de-
termined in polynomial time.

5 Graphs with large induced separation dimension

The separation dimension of an n-vertex graph is at most O(lg n) [3]. Since
induced separation dimension of a graph is at most its separation dimension, we
observe that the induced separation dimension of an n-vertex graph is at most
O(lg n). In this section, we construct graphs which show that this upper bound
is tight up to a constant factor.

Definition 17 (Bipartite cover). Given a graph G, the bipartite cover BG of
G is the direct product of G with K2. That is, if V (G) = [n], then the two color
classes in V (BG) are A = {a1, . . . , an} and B = {b1, . . . , bn} with ai adjacent to
bj in BG if and only if i is adjacent to j in G.

Theorem 18. For every graph G,

isd(BG) ≥ lgχ(G),

where χ(G) is the chromatic number of G.

Proof. A linear order ≺ of V (BG) is said to cover an edge ij of G if the two
strongly independent edges {aibj, ajbi} are separated in ≺. The set of edges of
G covered by ≺ forms a subgraph of G which we denote by G≺. We now argue
that G≺ is bipartite for any linear order ≺. Color a vertex i ∈ V (G) white if
ai ≺ bi and black otherwise. If an edge ij belongs to G≺ then aibj and ajbi are
separated in ≺. This happens only if ai ≺ bi and aj ≻ bj or vice versa. In both
cases i and j are of different color. Hence, we conclude that G≺ is a bipartite
subgraph of G.

Let L be a family of total orders which separates every pair of strongly
independent edges in BG. For every edge ij in G, the pair of edges {aibj, ajbi}
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are strongly independent in BG. Hence, every edge of G is covered by at least
one linear order in L. It is easy to see that at least lgχ bipartite graphs are
needed to cover all the edges of a χ-chromatic graph. Hence |L| ≥ lgχ(G). ⊓⊔

The bipartite cover of a complete graph is called a crown graph. By The-
orem 18, we see that the crown graph on 2n vertices has induced separation
dimension at least lg n. Thus, in general, bipartite graphs have unbounded in-
duced separation dimension.

Another intriguing family is that of AT-free graphs. Since AT-free graphs
have a kind of linear structure (dominating pairs) it is tempting to think that
their induced separation dimension is at most 1. But we know it is not. The
circular ladder CLk is the graph obtained by taking the Cartesian product of
the cycle Ck on k ≥ 3 vertices with an edge. Orienting a single edge of CLk forces
the orientation on every other edge if we want the orientation to be transitive
on each induced C4. It is easy to check that η(CLk) ≤ 1 if and only if k is
even. Corollary 4 shows that isd(CLk) ≤ 1 only when k is even. Notice that for
every odd k ≥ 5, CLk is AT-free (since CLk is triangle-free) and has induced
separation dimension more than 1. Now we amplify this result to show that the
induced separation dimension of the family of AT-free graphs is unbounded.

Definition 19 (Double). Given a graphG, the doubleDG ofG is the Cartesian
product of G with K2. That is, DG consists of two copies of G and a perfect
matching of edges between corresponding vertices in the two copies.

Theorem 20. For every graph G,

η(DG) ≥ lgχ(G),

where χ(G) is the chromatic number of G.

Proof. To every edge e of G, we associate the induced 4-cycle De in DG formed
by the two copies of e and the two matching edges between their endpoints. An
acyclic orientation O of DG is said to cover an edge e of G if the associated
4-cycle De is oriented transitively by O. The set of edges of G covered by O

forms a subgraph of G which we denote by GO. If GO contains an odd cycle Z,
then it means that O transitively oriented every induced C4 in the odd circular
ladder DZ ⊂ DG which we have observed is impossible. Thus, GO is bipartite
for any acyclic orientation O of DG.

Let O be a family of acyclic orientations of DG such that every induced C4

in DG is transitively oriented in at least one orientation in O. Therefore, every
edge of G is covered by at least one orientation in O. Hence |O| ≥ lgχ(G). ⊓⊔

If G is triangle free, so is DG and therefore the maximum size of an indepen-
dent set in DG is 2 and, in particular, DG is AT-free. There are many classic
constructions of families of triangle-free graphs with unbounded chromatic num-
ber, Mycielski graphs [17] for instance. If G is a family of triangle-free graphs
with unbounded chromatic number,

{

DG : G ∈ G
}

is a family of AT-free graphs
with unbounded induced separation dimension.
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