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Abstract In the analysis of metabolism, two distinct and complementary ap-
proaches are frequently used: Principal component analysis (PCA) and stoichio-
metric flux analysis. PCA is able to capture the main modes of variability in a set of
experiments and does not make many prior assumptions about the data, but does not
inherently take into account the flux mode structure of metabolism. Stoichiometric
flux analysis methods, such as Flux Balance Analysis (FBA) and Elementary Mode
Analysis, on the other hand, are able to capture the metabolic flux modes, however,
they are primarily designed for the analysis of single samples at a time, and assume
the stoichiometric steady state of the metabolic network.

We will discuss a new methodology for the analysis of metabolism, called Prin-
cipal Metabolic Flux Mode Analysis (PMFA), which marries the PCA and stoichio-
metric flux analysis approaches in an elegant regularized optimization framework.
In short, the method incorporates a variance maximization objective form PCA cou-
pled with a stoichiometric regularizer, which penalizes projections that are far from
any flux modes of the network. For interpretability, we also discuss a sparse variant
of PMFA that favours flux modes that contain a small number of reactions. PMFA
has several benefits: (1) it can be applied to large metabolic network in efficient way
as PMFA does not enumerate elementary modes, (2) The method is more robust
to the steady-state violations than competing approaches, and (3) can compactly
capture the variation in the data by a few factors. This chapter will describe the de-
tailed steps how to do the above task on experimental data from fluxomic and gene
expression measurements.
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1 Introduction

In the context of transcriptomics and fluxomics, Principal Component Analysis
(PCA) has been widely applied (Yao et al., 2012; Barrett et al., 2009), where a
principal component (PC) identifies linear combinations of genes or enzymatic re-
actions whose activity changes explain a maximal fraction of variance within the
set of samples under analysis. The main goals of PCA in fluxomic data analysis are
(i) to identify which parts of the metabolism retain the main variability in flux data
and (ii) to relate them to the samples, i.e, behaviour of the organism for particular
experimental condition.

However, in the context of analysing metabolic networks, PCA has a few limita-
tions (Folch-Fortuny et al., 2016) as depicted in Figure 1(b): PCA considers reac-
tions independently without considering any other structure or relationship among
reactions, including stoichiometric relations implied by metabolic pathways. PCA
simply extracts a set of reactions that are important to describe sample variance.
Moreover, the principal components output by PCA are known to be generally
dense, thus including most of the variables, which precludes their interpretation of
pathways of any kind.

This chapter discusses a method called Principal Metabolic Flux Mode Analysis
(PMFA) (Bhadra et al., 2017), which aims to rectify the deficiencies of the PCA
approach. PMFA finds metabolic flux modes that explain the variance in experi-
ments consisting of fluxomic or gene expression data collected from heterogeneous
environmental conditions, without requiring a fixed set of predefined pathways to
be given. The method can be seen as a cross between Principal Component Analy-
sis (PCA), and stoichiometrix flux analysis: It combines the variance maximization
objective of PCA coupled with a stoichiometric regularizer, which penalizes projec-
tions that are far from any flux modes of the network.

The benefit of the approach for modelling and biological interpretation is that
the sample variance captured by PMFA can be expressed in terms of metabolic
pathways or flux modes (Figure 1(c)). Let us first briefly review the PCA and Flux
Balance Analysis methods, which are frequently used to analyse data arising from
metabolic systems, before describing PMFA.

1.1 Principal Component analysis

Principal component analysis (PCA) is one of the most frequently applied statistical
methods in systems biology (Ma and Dai, 2011; Yao et al., 2012; Barrett et al.,
2009). PCA is used to reduce the dimensionality of the data while retaining most
of the variation in the data-set (Shlens, 2014). This reduction is done by identifying
directions, i.e. linear combination of variables, called principal components, along
which the variation in the data is maximal. By using a few such components, each
sample can be represented by relatively few variables compared to thousands of
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Fig. 1 While doing differential analysis of data given by (a), PCA considers reaction independently
and extract the reaction which are important to describe sample variance (as shown in (b)). PMFA
can be used for differential analysis of fluxomic data to extract interpretable pathways which are
responsible for maximum sample variance (as shown in (c)).

features. It also helps us to distinguish between biologically relevant variables and
noise.

We assume X2RN⇥Nr be the data matrix of Nr reactions in N samples, with each
entry corresponding to the flux, i.e. the rate of the reaction, through a particular re-
action in a particular experiment. We assume throughout the paper that all variables
have been centered to have zero empirical mean. The empirical covariance matrix is
then given by S = 1

N
XT X. Denoting S1 = S , the 1st principal component (PC) w1

can be found by solving

w1 = argmax
w2RNr

wT S1w, s.t.kwk2 = 1 (1)

Above, kwk2 =
p

wT w is the l2 norm of the vector w. The second PC can be found
by applying Eq.(1) on updated the covariance matrix using deflation as S2 = (1�
w1wT

1 )S1(1�w1wT

1 ) (Mackey, 2009).
The weights, also called the loadings, of the principal component w 2 RNr can

be interpreted as the importance of reactions in explaining the variance in fluxomic
data. The principal components are generally dense, containing most of the reac-
tions of the metabolic network. Sparse PCA (Zou et al., 2006) aims to increase the
interpretabilty of PCA by finding principal components that have a small number of
non-zero weights through solving the following optimization problem

max
w

wT Sw� gkwk1, s.t.kwk2 = 1 (2)

where g is a user defined hyper-parameter which controls the degree of sparsity
on PC. However, the principal components extracted by neither method represent
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metabolic flux modes, and will not in general adhere to the thermodynamic con-
straints on reaction directions.

1.2 Flux balance analysis (FBA)

Flux balance analysis (FBA) (Orth et al., 2010) is a mathematical method for sim-
ulating metabolism in genome-scale reconstructions of metabolic networks. FBA is
designed be used to find a flux distribution, in a stoichiometrix steady state, that
maximizes a given objective (e.g. growth).

The metabolic balance of the metabolic system is described using the exchange
stoichiometric matrix S 2 RNm⇥Nr (Raman and Chandra, 2009) which contains
transport reactions for inflow of nutrients and output flow of products, but does not
contain any external metabolites (as they cannot be balanced). Rows of this matrix
represent the Nm internal metabolites, columns present the Nr metabolic reactions
including transport reactions and each element Sm,r shows participation of the m

th

metabolite in the r
th reaction: Sm,r = 1 ( or �1) indicates that reaction r produces

(or consumes) the metabolite m. The value Sm,r = 0 indicates metabolite m is not
involved in the reaction r. For a flux vector w, Sw gives the change of metabolic
concentration for all metabolites. The metabolic steady-state is assured by imposing
a constraint Sw = 0.

FBA solves the following optimization problem

max
w

c
T w s.t.Sw = 0 and l  w  u, (3)

that calls for a finding a combination of reaction rates (w) that adhere to stoichio-
metric steady state as well as upper (u) and lower bounds (l), and maximize the
objective given by the combination of coefficients c and the reaction rates w. Typi-
cally, the objective is taken as maximization of biomass production, and in this case
c is equals to a row in the stoichiometric matrix corresponding to biomass produc-
tion.

Simulations performed using FBA are computationally inexpensive and can cal-
culate steady-state metabolic fluxes for large models (over 2000 reactions) in a few
seconds on modern personal computers. However, as the experimental data is not
directly represented in the optimization problem (3), FBA cannot be efficiently used
to understand the variability between samples.

1.3 Principal Metabolic Flux Mode Analysis (PMFA)

Here we describe the Principal Metabolic Flux Mode Analysis (PMFA) approach,
that combines the PCA and stoichiometric modelling views of metabolism. It finds
metabolic flux modes that explain the variance in gene expression or fluxomic data
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collected from heterogeneous environmental conditions without requiring a fixed set
of predefined pathways to be given. Here each principal component, called principal

metabolic flux mode (PMF), is found by selecting a set of reactions which represents
a metabolic flux mode which is approximately in steady state and explains most of
the data variability. In addition, we present a sparse variant, called Sparse Principal
Metabolic Flux Mode analysis (SPMFA), to further help the interpretation of the
principal components.

To obtain meaningful solutions of steady state flux distributions as PC loading
one can impose two additional constraints in PCA formulation:

1. the weights associated with irreversible reactions should always be posi-
tive, i.e., wir � 0, where ir is an index of an irreversible reaction.

2. System is in a steady state, where the internal metabolite concentrations
do not change, i.e. the metabolite producing and consuming fluxes cancel
each other out: Sw = 0.

Considering (1) and (2) the modified optimization problem for doing PCA with
structural constraint is as following

max
w

wT Sw

s.t. Sw = 0 (stoichiometric steady state)
wir � 0 (irreversible reactions can have only positive flux)
kwk2 = 1 (4)

The constraint kwk2 = 1 restricts the spurious scaling up of the weights in the solu-
tion. Here, Sw = 0 is a hard constraint and in practise imposes too much restriction,
due to noise in the data, or when the data does not actually arise from steady-state
conditions, e.g. given transients or perturbations of the fluxes during the experiment.
Numerically, the steady state constraint amounts to a set of linear equations of size
NM ⇥ NR which makes the problem (Eq.(4)) also computationally hard to solve.
Hence instead of considering this hard constraint on the PC loadings we introduce
a soft constraint which penalizes the deviation from the steady state. Our aim is to
find a flux which optimizes a combination of (1) maximal explained sample vari-
ance wT Sw and (2) minimal deviation from a steady-state condition, expressed in
the l2 norm: kSw� 0k2

2 = kSwk2
2. This entails solving the following optimization

problem:
max

w
wT Sw�lkSwk2

2

s.t. wir � 0
kwk2 = 1 (5)

Here l imposes the degree of hardness of the steady-state constraint. For l = 0 the
Eq.(5) produces loadings similar to PCA with the exception of the reaction direc-



6 Sahely Bhadra, Juho Rousu

tionality constraint. The model will be henceforth denoted as PMFA(l2). If desirable,
we can make our model to disregard reaction directionality simply by dropping the
inequality constraints wir > 0. By dropping the directionality constraint PMFA gives
fluxes corresponding to a metabolic network where all reactions are reversible.

The l2 norm on Sw in Eq.(5) has the tendency to penalize large steady state
deviations in individual metabolites, at the cost of favoring small deviations in many
metabolites. This is probably the desired behaviour in case the data comes from
conditions where there is no subsystems that is considerably farther from steady
state than other parts of the system. In order to capture the opposite scenario, where
a small subset of metabolites have large deviation from steady state, one can use l1
norm regularizer on Sw. The l1 norm regularizer kSwk1 in Eq.(5) puts the emphasis
of pushing most of the steady-state deviations to zero, whilst allowing a few outliers,
metabolites that markedly deviate from steady state. Using l1 regularizer and a trade-
off parameter l we get to solve the following optimization problem:

max
w

wT Sw�lkSwk1

s.t. wir � 0
kwk2 = 1 (6)

Here l imposes the degree of hardness of the steady-state constraint. Similarly to
Eq.(5) for l = 0 the Eq.(6) also produces loadings similar to PCA with selective
non-negative constraint. The model will be hence forth denoted as PMFA(l1) . Note
that the solution of PMFA(l2) is more stable than the solution of PMFA(l1).

1.3.1 Sparse principal metabolic flux mode analysis

The above formulation of PCA with stoichiometric constraint still suffers from the
fact that each principal component is a linear combination of all possible reaction ac-
tivities, thus it is often difficult to interpret the results. This problem can be avoided
by a variant of PMFA, the sparse principal metabolic flux mode analysis (SPMFA)
using an l1 regularizer (Tibshirani, 1996) on w to produce modified principal com-
ponents with sparse loadings.

max
w

wT Sw�lkSwk⇤

s.t. wir � 0
kwk1 =C (7)

where k · k⇤ can be any of the l2 and l1 norm and C is a used defined hyper-
parameter which controls the degree of sparsity in principal metabolic flux (PMF)
loadings. Similarly to PMFA, Sparse PMFA can also be made consider all reaction
reversible by dropping the directionality constraints wir � 0.
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1.3.2 Analysis of metabolic subsystems

One can apply our method to study differential flux modes only in a subsys-
tem of metabolic network (e.g. central carbon metabolism, redox subsystem, lipid
metabolism) by restricting the covariance matrix in objective function to the fluxes
in the subsystem, while keeping the stoichiometric regularizer the same as before.
Similarly, when some flux measurements are missing, one can change the covari-
ance matrix in the objective function to exclude the fluxes that are missing.

For example, to study the variation within the redox subsystem, let Xrdx contain
the columns of X corresponding to reactions containing redox co-factors, and let
wrdx represent the corresponding part of w. We will consider Srdx =

1
N

XT

rdx
Xrdx for

finding variance maximizing directions. Hence need to solve

max
w

wT

rdx
Srdxwrdx �lkSwk⇤

s.t. wir � 0 and kwk2 = 1 (8)

Similarly we can also apply SPMFA on metabolic subsystem.

2 Materials

We demonstrate the PMFA methods through two datasets: a simulation case study
on Pichia pastoris metabolic network, and an expreimental study on Saccharomyces

cerevisiae metabolic network. The details of the datasets are given in the following.

2.1 Datasets

Saccharomyces cerevisiae experimental case study

We use the metabolic network for Saccharomyces cerevisiae proposed by Hayakawa
et al. (2015) and 13C isotopic tracer based fluxome data used in (Stosch et al., 2016;
Hayakawa et al., 2015; Frick and Wittmann, 2005) to demonstrate the methods. The
network describes the central cytosolic and mitochondrial metabolism of S. cere-
visiae, comprising glycolysis, the pentose phosphate pathway, anaplerotic carboxy-
lation, fermentative pathways, the TCA cycle, malic enzyme and anabolic reactions
from intermediary metabolites into anabolism (Stosch et al., 2016).

The network contains 42 compounds (30 of which are internal metabolites, which
can be balanced for growth) and 47 reactions of which 39 are intracellular. The ob-
jective in this case study is to evaluate the performance of PMFA Eq.(5) on fluxome
data and compare it with PEMA and PCA. For PEMA we have used 1182 EMs
provided by Stosch et al. (2016).
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This dataset is available at https://github.com/aalto-ics-kepaco/
PMFA/tree/master/Data/SaccharomycesFluxomicData.mat. Table
1 describes its elements.

Table 1 Description of Saccharomyces cerevisiae fluxomic data
Matrix name Size Description
StoichiometricMatrix 42x47 double Stoichiometric information matrix for all reactions
rxnE 47x7 double Fluxomic data
metNames 42x1 cell Name of metabolites
rxnNames 47x1 cell Name of reaction
ExternalmetaboliteID 1x12 double ID of extra cellular metabolites
EMs 47x1182 double Elementary Modes
L 47x1 double lower bound for reaction flux

(Lr = 0 for irreversible and Lr =�1 for reversible reactions)

2.2 Scripts

Matlab software for PMFA and SPMFA are available in https://github.
com/aalto-ics-kepaco/PMFA. Both PMFA and SPMFA can be applied on
fluxomic and transcriptomic data.

Table 2 List of scripts required for using PMFA.
Script name Description
CentralizedExpression.m To centralized expression/fluxomic data
PCA.m To find principal components (PC) of a expression/fluxomic data
SPCA.m To find sparse PC of a expression/fluxomic data
PMFA L2.m To find PMF by minimizing squared norm of steady-state

deviations of intracellular metabolites
PMFA L1.m To find PMF by minimizing l1 norm of steady-state deviations

of intracellular metabolites
SPMFA L2.m To find sparse PMF by minimizing squared norm of steady-state

deviations of intracellular metabolites
SPMFA L1.m To find sparse PMF by minimizing l1 norm of steady-state deviations

of intracellular metabolites
Deflation.m To deflate a covariance matrix of the variability explained by a PMF.
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3 Finding principal flux modes

3.1 Data centralization

PCA, SPCA, PMFA, and SPMFA aim at explaining the main variability in data
using a few PCs.

If the original data have non-zero mean, the first principal component typically
heavily biased towards the sample mean, and fails to capture any variability between
the samples.

Hence before applying any of the methods, we need to centralize the expression
and fluxomic data.

Ec= CentralizedExpression(Einput,axis)

• Input :

– Einput: Expression/fluxomic matrix
– axis : Centralization should be done according to this axis

• output :

– Ec: Centralized expression//fluxomic matrix

Example in Matlab for centralizing fluxomic matrix of Saccharomyces cerevisiae

such that for every reaction the sample mean of the expression/flux is zero.

>> load(‘../Data/SaccharomycesFluxomicData.mat’);
>> Ec= CentralizedExpression(saccharomyces.rxnE,2);
>> mean(Ec,2) % this will produce a zero vector

3.2 Principal component analysis

Principal component analysis(PCA) as given by Eq.(1) and Sparse PCA correspond-
ing to Eq.(2) are implemented in PCA.m and SPCA.m

function W = PCA(E,num)

• Input :

– E: Expression/fluxomic matrix
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– num : The number of PCs to be extracted

• Output :

– W: Each column of this matrix represents PC loadings

Example in Matlab for finding the first 3 PC loadings for Saccharomyces cerevisiae

fluxomic data:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)
>> W = PCA(saccharomyces.rxnE,3)

function W = SPCA(Einput,gamma, num)

• Input :

– Einput: expression/fluxomic matrix
– gamma : User-defined parameter which indicates the degree of required spar-

sity in PC loadings. It corresponds to g in Eq.(2)
– num : The number of PCs to be extracted

• Output :

– W: Columns of this matrix represent sparse PC loadings

Example in Matlab for finding the first 3 sparse PC loadings for Saccharomyces

cerevisiae fluxomic data:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)
>> W = SPCA(saccharomyces.rxnE,1,3)

3.3 Finding Principal Metabolic Fluxes with PMFA

Principal Flux Mode Analysis as described in Section 1.3. is solved by the follow-
ing scripts. The script PMFA L2.m solves PMFA(l2) with l2 regularization on the
stoichiometric constraint Eq.(5) while PMFA L1.m solves PMFA(l1) with l1 regular-
ization on stoichiometric constraint Eq.(6).

Both scripts can be used to also find principal flux modes with respect to a subsys-
tem of metabolic network as described in Section 1.3.2. Both take reaction expres-
sion/fluxomic matrix corresponding to the defined subsystems along with a list of
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indices of these reactions in the stoichiometric matrix of the whole system. For the
steady state constraint both methods use the exchange stoichiometric matrix that
contains all reactions (intra-cellular and transport reactions) in the whole metabolic
network but only inter-cellular metabolites as this allows consumption and produc-
tion of extra-cellular metabolites through the principal flux modes.

function [W,TotalrunTime] = PMFA L2(Einput,S,lambda,L,U,num,ID)

• Input :

– Einput : The expression/flux data for reactions in the defined subsystem. The
size of this matrix is number of reactions in subsystem ⇥ number of samples

– S : Exchange stoichiometric matrix, containing all reactions in whole metabolic
network but only inter-cellular metabolites. The size of this matrix is number

of metabolites ⇥ number of reactions

– lambda : User-defined regularization parameter which indicates the degree of
penalization of steady-state violations in the PMF loadings. It corresponds to
l in equation Eq.(5)

– L: Vector containing lower bounds for fluxes in the reactions
– U: Vector containing upper bounds for fluxes in the reactions ( Default = vec-

tor of all ones)
– num: How many principal flux modes are to be computed ( Default = 1)
– ID: If we consider the analysis of a subsystem then ID contains list of index

of target reactions in stoichiometrix matrix (Default = index of all reactions in
the metabolic network)

• Output :

– W: Columns of this matrix represent the PMF loadings
– TotalrunTime: Total CPU time taken by PFMA

Example in Matlab for finding the first 3 PMF loadings for Saccharomyces cere-

visiae fluxomic data when l = 1 :

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% to find Stoichiometric matrix with all reactions

% in whole metabolic network but with only

% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when l = 1
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>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev-PMF loadings when lambda = 1
% Here we set the lower bound for all reactions at

% negative one

>> L = -1*ones(N,1)
>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...

S,1,L,saccharomyces.U,3)

For this data set optimum value for l is 5. For l = 5 PMF loadings for this data
is available in https://github.com/aalto-ics-kepaco/PMFA/tree/
master/SuplementaryResult/PMFsaccharoResultandAnalysis.

PMFA(l2) PCA PMFA(l2)

l= 5 l= 7
Principal components PMF1 PMF2 PMF3 PC1 PC2 PC3 PMF1 PMF2 PMF3

Fraction of sample variance 0.94 0.95 0.96 0.97 0.99 1.00 0.71 0.72 0.72
Metabolites changes (kSwk2

2) 0.27 0.28 0.05 0.28 0.38 1.05 0.09 0.01 0.00

Table 3 Comparing variance captured and changes of intra-cellular metabolites by PMFA(l2) for
optimum l and by PCA

The total percentage of variance captured by up to 1st, 2nd and 3rd PMFs are
94.11, 94.99 and 95.76. The `2-norm of steady-state deviations in intracellular
metabolites of the PMF are 0.27,0.28 and 0.05. Figure 3 shows the comparison of
optimal PFM with PCA. With increase of l value the resultant PMFs captured lesser
variance but on the other hand they are very close to steady state fluxes.

function [W,TotalrunTime]=PMFA L1(Einput,S,lambda,L,U,num,ID)

• Input :

– Einput : Expression/fluxomic data for reactions in the defined subsystem. The
size of this matrix is number of reactions in subsystem ⇥ number of samples

– S : Stoichiometric matrix with all reactions in whole metabolic network but
with only intracellular metabolites. The size of this matrix is number of

metabolites ⇥ number of reactions

– lambda : User-defined regularization parameter which indicates the degree of
penalization of steady-state violations in the PMF loadings. It is correspond-
ing to l in equation Eq.(6).

– L: Vector containing lower bounds of fluxes in the reactions
– U: Vector containing upper bounds of fluxes in the reactions (Default = vector

of all ones)
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– num: How many principal flux modes are to be computed (Default = 1)
– ID: If we consider the analysis of a subsystem then ID contains list of index

of target reactions in stoichiometrix matrix (Default = index of all reactions in
the metabolic network).

• Output :

– W: Columns of this matrix represent the PMF loadings
– TotalrunTime: Total cpu time taken by PFMA.

Example in Matlab for finding the first 3 PMF loadings for Saccharomyces cere-

visiae fluxomic data when l = 1 :

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions

% in whole metabolic network but with only

% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when l = 1

>> [W,TotalTime] = PMFA_L1(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev-PMF loadings when lambda = 1
% Here we set the lower bound for all reactions at

% negative one

>> L = -1*ones(N,1)
>> [W,TotalTime] = PMFA_L1(saccharomyces.rxnE, ...

S,1,L,saccharomyces.U,3)

3.4 Finding Sparse Principal Metabolic Fluxes with SPMFA

Sparse Principal Flux Mode Analysis as described in Section 1.3.1 is solved by the
following scripts. The script SPMFA L2.m solves SPMFA(l2) with l2 regularization
on the stoichiometric constraint while SPMFA L1.m solves SPMFA(l1) with l1 reg-
ularization on stoichiometric constraint.

Similarly to PMFA, SPMFA can also find differential flux modes only in a sub-
system of metabolic network as described in Section 1.3.2.
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function [W,TotalrunTime] = SPMFA L2(Einput,S,lambda,C,L,U,num,ID)

• Input :

– Einput : The expression/fluxomic data for reactions in the defined subsystem.
The size of this matrix is number of reactions in subsystem ⇥ number of

samples.
– S : Stoichiometric matrix with all reactions in whole metabolic network but

with only intracellular metabolites. The size of this matrix is number of

metabolites ⇥ number of reactions

– lambda : User-defined regularization parameter which indicates the degree of
penalization of steady-state violations in the PMF loadings. It is correspond-
ing to l in equation Eq.(7).

– C: The parameter controlling the sparsity; PMFs are more sparse for smaller
C.

– L: Vector containing lower bounds of fluxes in the reactions
– U: Vector containing upper bounds of fluxes in the reactions (Default = vector

of all ones)
– num: How many principal flux modes are to be computed (Default = 1)
– ID: If we consider the analysis of a subsystem then ID contains list of index

of target reactions in stoichiometrix matrix. (Default = index of all reactions
in metabolic network)

• Output :

– W: Columns of this matrix represent the sparse PMF loadings
– TotalrunTime: Total CPU time taken by PFMA

Example in Matlab for finding the first 3 PMF loadings for Saccharomyces cere-

visiae fluxomic data when l = 1 :

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% to find Stoichiometric matrix with all reactions

% in whole metabolic network but with only

% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when l = 1 and C = 3

>> [W,TotalTime] = SPMFA_L2(saccharomyces.rxnE, ...
S,1,3,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev-SPMF loadings when l = 1
% Here we set the lower bound for all reactions at
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% negative one

>> L = -1*ones(N,1)
>> [W,TotalTime] = SPMFA_L2(saccharomyces.rxnE, ...

S,1,3,L,saccharomyces.U,3)

function [W,TotalrunTime]=SPMFA L1(Einput,S,lambda,C,L,U,num,ID)

• Input :

– Einput : The expression/fluxomic data for reactions in the defined subsystem.
The size of this matrix is number of reactions in subsystem ⇥ number of

samples.
– S : Stoichiometric matrix with all reactions in whole metabolic network but

with only intracellular metabolites. The size of this matrix is number of

metabolites ⇥ number of reactions

– lambda : User-defined regularization parameter which indicates the degree of
penalization of steady-state violations in the PMF loadings. It is correspond-
ing to l in equation Eq.(7).

– C: The parameter controlling the sparsity; PMFs are more sparse for smaller
C.

– L: Vector containing lower bounds of fluxes in the reactions
– U: Vector containing upper bounds of fluxes in the reactions (Default = vector

of all ones)
– num: How many principal flux modes are to be computed (Default = 1)
– ID: If we consider the analysis of a subsystem then ID contains list of index

of target reactions in stoichiometrix matrix. (Default = index of all reactions
in metabolic network)

• Output :

– W: Columns of this matrix represent the sparse PMF loadings
– TotalrunTime: Total cpu time taken by PFMA

Example in Matlab for finding the first 3 sparse PMF loadings for Saccharomyces

cerevisiae fluxomic data when l = 1 and C = 1:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions

% in whole metabolic network but with only

% intercellular metabolites.
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>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when l = 1

>> [W,TotalTime] = SPMFA_L1(saccharomyces.rxnE, ...
S,1,3,saccharomyces.L,saccharomyces.U,3)

% Find the first 3 rev-PMF loadings when lambda = 1
% Here we set the lower bound for all reactions at

% negative one

>> L = -1*ones(N,1)
>> [W,TotalTime] = SPMFA_L1(saccharomyces.rxnE, ...

S,1,3,L,saccharomyces.U,3)

3.5 Deflating the Covariance matrix

To obtain a multi-factor PMFA model, i.e. a model containing several PMFs jointly
representing the data, we follow a approach similar to some PCA algorithms,
namely the deflation of the covariance matrix. However, due to additional sto-
ichiometric constraint here we deal with a sequence of non-orthogonal vectors,
[w1, . . . ,wd ] hence we must take care to distinguish between the variance explained
by a vector and the additional variance explained, given all previous vectors. We
have used orthogonal projection for deflating the data matrix (Mackey, 2009). This
also maintain positive definiteness of covariance. For every iteration d + 1 we first
transfer already found principal flux modes W 2 RNR⇥d to a set of orthogonal vec-
tors, {q1, . . . ,qd}.

qd =
(I �Qd�1Q

T

d�1)wd

k(I �Qd�1Q
T

d�1)wdk
(9)

where, q1 = w1, and q1, . . . ,qd form the columns of Qd . q1, . . . ,qd form an orthonor-
mal basis for the space spanned by w1, . . . ,wd . Then the Schur complement deflation
of covariance matrix is done by

Sd+1 = Sd �
Sdqdq

T

d
Sd

q
T

d
Sdqd

(10)

function [Covdef,Q] = Deflation(Cov,W)

• Input :
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– Cov : Covariance of Expression/fluxomic data for reactions in the defined
subsystem. The size of this matrix is number of reactions in subsystem ⇥
number of reactions in subsystem.

– W: Columns of this matrix represent the sparse PMF loadings

• Output :

– Covdef: Deflated Covariance matrix.
– Wn: Orthogonal transformation of PMFs. It is Q in Eq.(9)

Example in Matlab for finding the first 2 PMF loadings for Saccharomyces cere-

visiae fluxomic data using deflation of expression matrix:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions

% in whole metabolic network but with only

% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first PMF loadings when l = 1

>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,1)

% Data centralization

>> E=CentralizedExpression(saccharomyces.rxnE,2);

% covariance

>> CovE=E*E’;

% Find Covariance matrix deflated by the first PMF

>>[Covdef,Q] = Deflation(Cov,W)

3.6 Computing the total variance captured by PMFs

To find the total sample variance explained by first few PMFs, we first transfer
already found principal flux modes W 2 RNR⇥d to a set of orthogonal vectors,
{q1, . . . ,qd} using Eq.(10). Then we sum up the variance captured by {q1, . . . ,qd}.
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The script varianceCap.m calculate total cumulative variance captured by upto k
th

PFMs.

function [v] = varianceCap(E,W)

• Input :

– E : The expression/fluxomic data for reactions in the defined subsystem. The
size of this matrix is number of reactions in subsystem ⇥ number of samples.

– W: Columns of this matrix represent the PMF loadings

• Output :

– v: A vector where the k
th element shows the total fraction of sample variance

captured by all PMF upto the k
th PMF together.

Example in Matlab for finding the variance captured by first 3 PMF loadings for
Pichia pastoris simulation data:

>> load(‘../Data/SaccharomycesFluxomicData.mat’)

% Find Stoichiometric matrix with all reactions

% in whole metabolic network but with only

% intercellular metabolites.

>> M = size(saccharomyces.StoichiometricMatrix,1)
>> IDin = setdiff([1:1:M],saccharomyces.ExternalmetaboliteID)
>> S = saccharomyces.StoichiometricMatrix(IDin,:)

% Find the first 3 PMF loadings when l = 1

>> [W,TotalTime] = PMFA_L2(saccharomyces.rxnE, ...
S,1,saccharomyces.L,saccharomyces.U,3)

% Find total variance captured by PMFs

>> [v] = varianceCap(saccharomyces.rxnE,W)
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4 Further guidelines

Directionality constraints in PMFA and SPMFA

The benefit of the directionality constraint is that the results are interpretable as
flux modes with thermodynamically correct reaction directions. The directionality
constraint also has been observed to increase the stability of PMFA. However, in-
sisting on interpretability of flux modes with correct directionality may lose some
power of explaining the variance. Hence dropping the directionality constraints may
sometimes give further insight on the main sources of variation.

Finding mean flux modes

PMFA is similar in philosophy with the differential expression analyses where genes
that vary between experiments are of interest. PMFA is not very well suitable for
the analysis of a single sample at a time. If one uses the method for technical or
biological replicates, the resulting flux modes will mostly capture the pattern in the
noise. Also, the method is not designed to capture the main active flux modes but
to capture fluxes that explain differences between different samples. However, it is
easy to modify the PMFA objective so that it finds the average flux mode in a set of
experiments, essentially replacing the covariance with the mean.

Analysis of non-linear trajectories

PMFs are good for explaining the main linear directions of variance, interpretable
as pathways, in the samples but are not expected to fully explain complex non linear
trajectories, e.g. time course data.

Finding the optimal models

The objective function of is non-convex Eq.(5), and can be interpreted as difference
of two differentiable convex functions. This type of optimization problem is known
as Difference of Convex functions (DC) program. We have used the convex-concave
procedure (CPP), a local heuristic that utilizes the tools of convex optimization to
find local optima of difference of convex functions (DC) programming problems
(Lipp and Boyd, 2016). Using the CCP method we solved Eq.(5) by solving follow-
ing convex approximation (quadratic program) in each iteration t:

wt+1 = argmin
w

l
2
kSwTkq �wt

T SEw

s.t. wir � 0 (11)
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followed by projecting wt+1 on kwkp = C. The norms p,q 2 {1,2} are chosen ac-
cording to the desired model.

To find a good local optimum, we repeat the above optimization with different
random starting points, and take the best local minimum as the solution. In our
experiments we used 100 repetitions (Rep=100).

Estimating optimal values for user-defined parameters

The performance of SPCA, PMFA and SPMFA depends on the value of used defined
parameters, namely the regularization parameters l for PMFA and SPMFA, and the
level of sparsity C for SPMFA, and g for SPCA. One should carefully chose those
parameters to find correct differential fluxes.

With g = 0, SPCA corresponds to normal PCA. With the increase of g we in-
crease the sparseness in PC loadings and hence increase the interpretability of it but
decrease the amount of sample variance described by the PC. Hence too high value
in g is not good. Similarly, The parameter C controls the sparsity in SPMFA. Here
with decrease of C the sparsity in loading increases.

The deviation from the steady-state in PMFA and SPMFA is controlled by the
regularization parameter l � 0: high values of l give low deviation from steady-
state and vice-versa. In particular on the fluxomic datasets, relatively heavy regu-
larization can be applied without decrease of variance explained (cf. Figure 2). By
change of the regularisation parameter l , the statistics of PMFA exhibit a continu-
ous transition from fully steady state flux modes (kSwk2

2 = 0) to the PCA augmented
with reaction directionality constraints.

The optimum levels of the can be set by cross-validation maximizing the fraction

of sample variance captured on test samples

Fraction of variance =
wT Sw

Trace(S)
,

which is a classic measure used with PCA and related approaches. Above, w is
the PC computed from the training data, and S is the co-variance matrix of the
test sample. Leave-One-Out (LOO) cross-validation can be used on smaller data-
sets and less time-intensive techniques, such as 5-fold cross-validation on larger
datasets.

For Saccharomyces cerevisiae fluxomic data we have selected optimum param-
eter using LOO cross validation. Figure 2 shows the variance captured by the first
PMF on training and test data for various values of l and also corresponding kSwk2.
Optimum l is chosen to be 5.

PMFA on expression data

To analyze gene expression data with PMFAand SPMFA, one needs to map the gene
expression to the corresponding biochemical reactions. One can transfer the expres-
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Fig. 2 Figure shows the variance captured by the first PMF on traning and test data for various
values of l and also corresponding kSwk2. Optimum l is chosen to be 5

sion matrix from gene to reaction-wise with help of gene rules defined in metabolic
network (Jensen et al., 2011; Herrgård et al., 2006). Gene rules are Boolean rules
that determine the effect of the expression of regulatory genes on the activity of
reactions in the metabolic network.

5 Conclusion

In this chapter we have demonstrated the analysis of fluxomic data with Principal
Metabolic Flux Mode Analysis, PMFA. (Bhadra et al., 2017). Through the combi-
nation of stoichiometric flux analysis and principal component analysis, the PMFA
finds flux modes that explain most of the variation in fluxes in a set of samples.
Unlike most stoichiometric modeling methods, PMFA is not tied to the steady-state
assumption, but can automatically adapt—by the change of a single regularization
parameter—to deviations from the stoichiometric steady-state, whether they are due
to measurement errors, biological variation, or other causes. PMFA can also be ap-
plied time course and gene expression data. On the other hand, SPMFA that allows
us to discover flux modes with a small fraction of reactions activated, thus could be
interpreted as pathways. Thus, SPMFA is effective in the analysis large metabolic
networks.
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